Table of contents

Table of contents	
Chapter 1 Product Information	
1.1 About servo driver	
1.2 About servo motor	
1.3 List of servo unit and servo motor combinations	23
Chapter 2 Installation Instruction	24
2.1 Installation of servo driver	24
2.2 Installation of servo motor	
Chapter 3 Peripheral Devices and Wiring	29
3.1 Diagram for wiring of peripheral devices	29
3.2 Selection of cable and peripheral accessories	
3.3 Wiring of connector CN1	
3.4 Wiring of connector CN2	46
3.5 Wiring of connector CN3	46
3.6 Wiring of connector CN4	47
3.7 Wiring of connector CN5	
3.8 Wiring of connector on motor side	51
Chapter 4 Display and Operation of Panels	
4.1 Introduction to keys on panel	
4.2 Change of operation mode	
4.3 Setting of parameters for group P	54
4.4 Display of parameter for group U	54
4.5 Description on use of parameter of group F	
4.6 Fault display	56
4.6 Fault display	57
4.6 Fault display Chapter 5 Control and Timing Sequence	57 57
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 	57 57 58
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 	57 57 58 60
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 5.3 Diagram for timing sequence of shutdown 	
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 5.3 Diagram for timing sequence of shutdown	
 4.6 Fault display Chapter 5 Control and Timing Sequence	
 4.6 Fault display Chapter 5 Control and Timing Sequence	
 4.6 Fault display Chapter 5 Control and Timing Sequence	
 4.6 Fault display Chapter 5 Control and Timing Sequence	
 4.6 Fault display Chapter 5 Control and Timing Sequence	
 4.6 Fault display Chapter 5 Control and Timing Sequence	
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 5.3 Diagram for timing sequence of shutdown 5.4 Release Function Setting Chapter 6 Control Mode 6.1 Position Control Pulse Mode 6.2 Position control homing mode 6.3 Speed mode 6.4 Torque mode 6.5 Mode switch 	
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 5.3 Diagram for timing sequence of shutdown 5.4 Release Function Setting Chapter 6 Control Mode 6.1 Position Control Pulse Mode 6.2 Position control homing mode 6.3 Speed mode 6.4 Torque mode 6.5 Mode switch Chapter 7 Adjustment 7.1 Gain adjustment target 	
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 5.3 Diagram for timing sequence of shutdown 5.4 Release Function Setting Chapter 6 Control Mode 6.1 Position Control Pulse Mode 6.2 Position control homing mode 6.3 Speed mode 6.4 Torque mode 6.5 Mode switch Chapter 7 Adjustment 7.1 Gain adjustment target 7.2 Manual gain adjustment 	
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 5.3 Diagram for timing sequence of shutdown 5.4 Release Function Setting Chapter 6 Control Mode 6.1 Position Control Pulse Mode 6.2 Position control homing mode 6.3 Speed mode 6.4 Torque mode 6.5 Mode switch Chapter 7 Adjustment 7.1 Gain adjustment target 7.2 Manual gain adjustment 	
 4.6 Fault display Chapter 5 Control and Timing Sequence	
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 5.3 Diagram for timing sequence of shutdown 5.4 Release Function Setting Chapter 6 Control Mode 6.1 Position Control Pulse Mode 6.2 Position control homing mode 6.3 Speed mode 6.4 Torque mode 6.5 Mode switch Chapter 7 Adjustment 7.1 Gain adjustment target 7.2 Manual gain adjustment Chapter 8 Communication Mechanism 8.1 Mod bus communication protocol 8.2 RTU function command 	
 4.6 Fault display Chapter 5 Control and Timing Sequence 5.1 Diagram for timing sequence of powering on 5.2 Diagram for timing sequence of brake enable 5.3 Diagram for timing sequence of shutdown 5.4 Release Function Setting Chapter 6 Control Mode 6.1 Position Control Pulse Mode 6.2 Position control homing mode 6.3 Speed mode 6.4 Torque mode 6.5 Mode switch Chapter 7 Adjustment 7.1 Gain adjustment target 7.2 Manual gain adjustment Chapter 8 Communication Mechanism 8.1 Mod bus communication protocol 8.2 RTU function code communication address 	

10.2 DI/DO function	159
Chapter 11 Commissioning of Linear Motor	160
11.1 Procedure for commissioning of linear motor	160
11.2 Parameter setting of linear motor	160
11.3 Check the signal feedback of linear motor	
11.4 Linear angle identification	164
11.5 Linear commissioning	165

Chapter 1 Product Information

1.1 About servo driver

Description on drivermodel

Note: A driver model with A00 or a default suffix is a standard unit.

Description on driver nameplate

Composition of servo driver

Specifications for servo driver Electrical specification

Item	1	Гуре SIZ	ZE-A	Type SIZE-B			
Driver model TDS-R*-PA**	R70	R90	1R6	2R8	3R8	5R5	7R6
Continuous output current (A)	0.7	0.9	1.6	2.8	3.8	5.5	7.6
Maximum output current(A)	2.1	3.2	5.9	9.3	11	16.9	17
Voltage specification of input power supply	Single-phase AC200V-240V, +10~-15%, 50/6					60HZ	
Current specification of input power supply (A)	0.8	1.6	2.4	5	6.3	8.7	10
Brake handling function	Extern	al brake	resistan	ce B	uilt-in bı	ake resi	stance
Resistance value of built-in braking resistance(Ω)					50	50	50
Capacity of built-in brake resistor(W)					50	50	50
Minimum resistance value of external braking resistance(Ω)	40	40	40	40	40	40	40

Basic specific	ations		TDTOOP series servo user manual
	Item		Descriptions
	Control mode		IGBT PWM control, sine wave current
			driver mode.
			R0 Series: Incremental line saving
			Encoder:2500 line incremental encoder
		Rotary motor	R1 Series: Bus type serial encoder:
			17bit (absolute/incremental encoder)
	Encoder		23bit (absolute/incremental encoder)
	feedback		Absolute linear encoder (signal
			resolution varies with absolute linear
		Linear motor	encoder)
			Incremental linear encoder (signal
			resolution varies with incremental linear
Basic			encoder and serial conversion unit)
specifications		Digital input	General 8 input
		signal	General input function is selected by
	Control signal		parameters
		Digital output	General 5 output
		signal	General output function is selected by
			parameters
	Analog signal	Input	1 channel of 12bit A/D input
		USB	Connect with computer, etc
	Communication	RS485	Possible for 1: n communication with
	function		maximum 247 shaft
		Axes address	Based on user settings
		setting	
	Dynamic brake		Built-in

			TD100P series servo user manual			
	Item		Descriptions			
			Velocity mode, torque mode, position			
			mode, position/velocity mode,			
	Control model		position/torquemode, velocity-torque			
			mode, full closed loop mode			
			The above 7 control modes can be			
			switched by parameters			
		Load	Less than $\pm 0.1\%$ of rated velocity (load			
		variation rate	fluctuation: 0~100%)			
	Velocity	Voltage	0% of rated velocity (voltage			
	variation rate *1	variation rate	fluctuation: ±10%)			
D f		Temperature	Less than 0.1% of rated velocity			
Performance		variation rate	(temperature fluctuation: 25 ± 25 °C)			
	Velocity control	range	1:6000			
	Frequency charac velocity loop	eteristics of	3.0KHZ			
	Torque control ac	curacy	±1%			
	Soft start time se	tting	0~60s(Acceleration and deceleration can be set respectively)			
	Control input		Change to enable switch, over-travel switch, command disable switch, internal mode selector switch, internal command selector switch, etc.			
Velocity control mode	Control output		Servo ready, positioning OK brake output, velocity reach, torque reach, etc			
			Maximum input voltage: ±12V maximum (motor rotates positive in case			
	Analog	Command	of a positive voltage command)			
	command input	voltage	The rotating velocity at DC10V is			
			3000rpm(*mm/s), and the corresponding			
			rotating velocity can be set as required.			

TD100P series servo user manual

			TD100P series servo user manual			
	Item		Descriptions			
	Analog	Input impedance	Appr 9kΩ			
	command input	Circuit time parameters	Appr 47µs			
Torque Analog control mode command inpu		Command voltage	Maximum input voltage: ±12V maximum (net torque output of motor in case of a positive voltage command) The torque is 100% at dc10v, and the corresponding torque can be set freely			
	command input	Input impedance	Appr 9kΩ			
		Circuit time parameters	Appr 47µs			
	Filtering setting		Smooth filtering, low-pass filtering, low-frequency jittering-suppression and other command processing			
	Feed-positive compensation		0 ~ 100.0%			
	Output signal pos	sitioning width	Command unit and encoder unit are			
Position	setting OK		settable, in an unit of 1			
control mode	Input signal	Impulse command	Input pulse shape	Choose any of the following: "Direction + pulse", "90° phase orthogonal pulse", "CW + CCW pulse"		
			Input shape	Differential input, open-circuited collector		

				TD100P series servo user manual	
	Item	_		Descriptions	
Position control mode			Input pulse frequency	Differential input: 4mpps maximum, pulse width no less than 0.125us; open-circuited collector : 200kpps maximum , pulse width no less than 2.5us.	
	Input signal	Electronic gear ratio	≤ Electroni		
		Power supply for built-in collector in case of open circuit * 2		n 2.4kΩ resistor)	
		Clear signal		ation clearing, supports and open-circuited collector	
	Encoder frequency division pulse output	Output shape	Phase A, phase B: differential output Phase Z: Differential output or open-circuited collector output		
		Frequency division ratio	Any frequency division		

TD100P series servo user manu					
	Item		Descriptions		
			8-channel DI		
			DI function: Servo enable, alarm reset,		
			gain switch, zero position fixing		
		Possible to	function enable, position command		
	Digital input	make change	disable, positive over-travel switch,		
	signal	in signal	negative over-travel switch, positive		
	Signal	distribution	jogging, negative jogging, electronic		
			gear selection, home switch, home reset		
			enable, position deviation clearing,		
I/O signal			internal velocity limit selection, and		
			pulse command disable.		
			5-channel DO		
			DO function:		
		Possible to	Servo ready, motor rotating,		
	Digital output make chang		zero-velocity signal, velocity		
	signal	in signal	consistent, positioning OK, torque limit,		
		distribution	velocity limit, brake output, warning		
			output, fault output, home reset OK,		
			torque reach, and velocity reach.		
	Over-travel (OT)	prevention	Stop immediately when P-OT and N-OT		
	function		are triggered.		
			Overcurrent, overvoltage, insufficient		
			voltage, overload, main circuit detection		
Built-in			abnormality, radiator overheating,		
function	Protection function	on	power supply phase failure,		
			overvelocity, encoder abnormality, CPU		
			abnormality, parameter abnormality, and		
			others		
	LED display func	stion	Main power supply CHARGE, 5-bit LED		
			display		

	I D I O O I SEI ES SEI VO USEI III allual		
Item	Descriptions		
Analog quantity monitoring function for observation	Provided with built-in analog quantity monitoring connector for observing velocity, torque command signal, etc		
Vibration suppression	Compatible with 0-100Hz low frequency suppression Compatible with 100-5000Hz medium-high frequency suppression		
Others	Gain adjustment, alarm recording, IOG operation		

Note *1: The velocity variation rate is defined by the following formula:

$$Velocity variation rate = \frac{Noload velocity - Fullload velocity}{Rated velocity} * 100\%$$

In fact, the variation of voltage and temperature will lead to the deviation of amplifier and the variation of hydrochloric acid resistance. Therefore, such variation will be shown by the variation of the rotational velocity. The variation rotational velocity is expressed by the ratio of the rated rotational velocity, which is the rate of variation of velocity caused by voltage variation and temperature variation respectively.

Note * 2: The power supply for the open-circuited built-in collector is not electrically isolated from the control circuit in the servo driver.

Installation dimension of servo driver

SIZE-A installation dimension diagram (in: mm) :

SIZE-B installationdimension diagram (in: mm) :

1.2 About servo motor Description on model of EAM-S/T series servo motor EAM - S F-0430A-U 3 0 - X X Serial No. Mark Mark Customer code EAM Servo motor 01 1# non-standard Mark Motor series Brake, reducer, oil seal Mark Mark Motor series S S series F Low inertia 0 Oil seal Т T series G Middle inertia No oil seal 1 . . . Н High inertia 2 Oil seal + brake 4 Brake Mark Rated power (W) Mark Shaft connection mode A5 50 1 Optic shaft 100 01 2 Solid, keyed 02 200 3 Solid, keyed, with threaded hole Rated velocity (rpm) Mark 04 400 4 Solid, with threaded hole 15 1500 06 600 20 2000 08 750 25 2500 Mark Encoder type 09 850 30 3000 10 1000 1 2500-wire line-saving incremental encoder 13 1300 2 S-type 17-bit multi-ring absolute value encoder Mark Voltage grade 15 1500 3 S-type 17-bit single-ring absolute value encoder AC 200V А 4 R-type 17-bit multi-ring absolute value encoder 18 1800 AC 400V Т 2000 5 R-type 17-bit single-ring absolute value encoder 20 D DC 48V 25 6 1024-wire line-saving incremental encoder 2500 D 29 2900 20-bit bus encoder U 23-bit multi-ring absolute value encoderbus encoder 30 3000

Note: A servo motor model with a default suffix is a standard unit.

1.2.1 Description on EAM-S series servo motor

Description on nameplate of EAM-S series servo motor

Specification for mechanical characteristic parameters of EAM-S series servo motor

ltem	Description
Rated time	Continuous
Vibration level	V15
Insulation	$DC500V$, $10M\Omega and above$
Operating	0 ~ 40 ℃
Excitation mode	Permanent magnet type
Installation mode	Flange type
Heat resistance	Level F
Isolation voltage	AC1500V 1min(200V level)
Housing	IP65
Operating	$20 \sim 80\%$ (no condensation)
Connection mode	Direct connection
Rotation direction	Counter clockwise (CC rotation) when viewed from load side

Specification for rating of EAM-S series servo motor

Model	Base		torque	torque	Rated current (A)		Rated velocity (rpm)	Max velocity (rpm)	Torque parameter (N m/A)		Voltage (V)
EAM-SF-0130A-***	40	0.1	0.32	0.96	0.8	2.4			0.4	0.035	
EAM-SF-0230A-***		0.2	0.64	1.92	1.1	3.3			0.58	0.264	
EAM-SF-0430A-***	60	0.4	1.27	3.81	2.3	6.9		5000	0.55	0.407	
EAM-SF-0630A-***		0.6	1.91	5.7	3.8	11.4		3000	0.5	0.526	
EAM-SF-0830A-***	80	0.75	2.39	7.2	4.2	12.6	3000		0.6	0.924	220V
EAM-SF-1030A-***	00	1.0	3.18	9.6	4.5	13.5			0.71	1.207	
EAM-SF-1230A-***		1.2	4	12	4.5	15			0.89	7.62	
EAM-SF-1530A-***	110	1.5	5	15	5.5	18		3500	0.91	9.45	
EAM-SF-1830A-***		1.8	6	18	7	18			0.85	11.3	

Note: Please communicate with our technicians when selecting motor with base 110.

			1010	or series	servo user manual
Electrical specification for br	ake of EAM-S serie	s brak	e moto	or	
	D	Out	In	Rated	Brake
Motor model	Power supply of	time	power	holding	
	voltage(V) ±10%	time	(ms)	(w)	torque (N.m)
EAM-SF-A530A /0130A		20	50	6.1	≥0.32
EAM-SF-0230A/0430A/0630A	DC24	40	50	6.44	≥1.32
EAM-SF-0830A/1030A		40	60	11.5	≥3.2
EAM-SF-1230A/1530A/1830A		60	120	14.4	≥6

• The brake shall not share power supply with other electrical appliances to prevent the voltage or current from decreasing due to the operation of other electrical appliances, which will eventually cause the brake to malfunction.

• Cables with a specification of more than 0.5mm² will be recommend

Installation dimensions of EAM-S series servo motor

Installation dimension diagram for 100W servo motor without brake (in: mm):

Installation dimension diagram for 100W servo motor with brake (in: mm):

DIMENSIONS Unit=mm

Installation dimension diagram for 200W servo motor without brake (in: mm):

Installation dimension diagram for 400W servo motor without brake (in: mm):

Installation dimension diagram for 400W servo motor with brake (in: mm):

Installation dimension diagram for 600W servo motor without brake (in: mm):

Installation dimension diagram for 600W servo motor with brake (in: mm):

Installation dimension diagram for 750W servo motor without brake (in: mm):

Installation dimension diagram for 750W servo motor without brake (in: mm):

Installation dimension diagram for 1000W servo motor without brake (in: mm):

Installation dimension diagram for 1000W servo motor with brake (in: mm):

1.2.2 Description on EAM-T series motor

Description on nameplate of EAM-T series motor

Specification for mechanical characteristic parameters of motor					
Item	Description				
Rated time	Continuous				
Vibration level	V15				
Insulation resistance	$DC500V$, $10M\Omega and above$				
Operating ambient	0 ~ 40 ℃				
Excitation mode	Permanent magnet type				
Installation mode	Flange type				
Heat resisting class	F level				
Isolation voltage	AC1500V 1min(200V level)				
Housing protection mode	IP65				
Operating ambient	20 ~ 80% (No condensation)				
Connection mode	Direct connection				
Rotation direction	Counter clockwiserotation (CCW) when viewed from load side under positive rotation command				

TD100P series servo user manual

Specification for rating of EAM-T series servo motor											
Model		Rated output (kW)*1			Rated current (A)	Max current (A)	Rated velocity (rpm)	Max velocity (rpm)	Torque partmeter (N.m/A)		Voltage (V)
EAM-TH-0130A -53*		0.1	0.32	0.96	1.1	3.3		6000	0.306	0.048 (0.051)	
EAM-TH-0230A -53*	10	0.2	0.64	2.23	1.9	6.6	2000	6500	0.33	0.29 (0.31)	220
EAM-TH-0430A -53*	40	0.4	1.27	4.46	3.2	11.2	3000	6500	0.4	0.56 (0.58)	220
EAM-TH-0830A -53*		0.75	2.39	8.36	5.1	17.8		6500	0.465	1.56 (1.66)	

Note: The data in brackets refer to relevant parameters of the brake motor.

Electrical specification for brake of EAM-T series brake motor:						
Motor model	Power supply voltage (V)±10%	Disengaging time (ms)	Engaging time(ms)	Rated power(W)	Brake holding torque(N.m)	
EAM-TF-0130A-532		20	60	6.1	≥0.32	
EAM-TH-0230A/0430A-532	DC24	20	60	7.6	≥1.5	
EAM-TH-0830A-532		20	60	8.5	≥2.5	

Installation dimension of EAM-T series servo motor

EAM-TF-0130A-530 Installation dimension diagram for 100W servo motor without brake

EAM-TF-0130A-532 Installation dimension diagram for 100W servo motor with brake

EAM-TH-0230A-530 Installation dimension diagram for 200W servo motor without brake:

EAM-TH-0230A-532 Installation dimension diagram for 200W servo motor with brake:

EAM-TH-0430A-530 Installation dimension diagram for 400W servo motor without brake

EAM-TH-0430A-532 Installation dimension diagram for 400W servo motor with brake

EAM-TH-0830A-530 Installation dimension diagram for 750W servo motor without brake (in mm):

EAM-TH-0830A-532 Installation dimension diagram for 750W servo motor without brake :

1.3 List of servo unit and servo motor combinations

Serv	o motor model	Power	Serv	o driver model
	EAM-SF-A530A	50W		TDS-R*-PAR70
	EAM-SF-0130A	100W		TDS-R*-PAR90
	EAM-SF-0230A 200W		TDS-R*-PA1R6	
	EAM-SF-0430A	400W		TDS-R*-PA2R8
EAM-SF	EAM-SF-0630A	600W		TDS-R*-PA3R8
EAM-TF EAM-TH	EAM-SF-0830A	750W	TDS-R*	TDS-R*-PA5R5
	EAM-SF-1030A	1000W		TDS-R*-PA5R5
	EAM-SF-1230A 1200W	1200W		TDS-R*-PA7R6
	EAM-SF-1530A	1500W		TDS-R*-PA7R6
	EAM-SF-1830A	1800W		TDS-R*-PA7R6

Note: Please communicate with our technicians when selecting a motor with base 110.

Chapter 2 Installation Instruction

2.1 Installation of servo driver

Installation site

- Install this product in a control panel within a room free from rain and direct sunlight, and without flammable materials placed around, as it is provided with no waterproof structure.
- Do not use this product in an environment with corrosive gas or liquid.
- Do not use this product in an environment with flammable gas or near combustible materials.
- Do not install this product in a place with high temperature, humidity, dust, cutting fluid, oil mist, metal dust, etc..
- ▶ Install this product in a well ventilated, dry and dust-free place.
- Install this product in a vibration-free place.
- Do not use gasoline, diluents, alcohol, acid and alkaline cleaning agent to avoid discoloration or damage of the housing.

Environmental	conditions
Item	Conditions
Altitude	The altitude shall be less than 1000m, in case of an altitude of 1000m
	and above, the product should be derated in use (to be de-rated by
	10% for every 500m increase in altitude)
Atmospheric	86kPa~106kPa
Operating	$0 \sim +55 ^{\circ}\text{C}$ (in case of an ambient temperature of $40-55 ^{\circ}\text{C}$, the
temperature	average load rate should not exceed 80%) (no condensation * 2)
Save	$-20 \sim 85 ^{\circ}$ C (no condensation*2)
Humidity	Less than 90%RH (no condensatio*2)
Vibration	Less than 10~60HZ 5.88 m/s ² (0.6G) , less than 20Hz 9.80665 m/s ²
	(1G)
Impact	$19.6 \mathrm{m/s}^2$
IP grade	IP20
Pollution level	PD2

*1 Allowable temperature for a short time including transportation factors.

*2Please note that condensation is easy to occur when the temperature decreases and the humidity increases.

Installation and precaution Installation direction

- This product is provided with a vertical structure; please ensure that the drive is installed vertically.
- The driver shall be firmly fixed on the mounting surface through the mounting hole as shown in the diagram (by M4 mounting screws, with a recommended torque of 1.7~2N-m).

Cooling

- Please leave enough space around the driver for effective cooling, with a spacing more than 50mm to be preserved above and below the driver, as shown in the above figure, and a lateral spacing of more than 10mm to be maintained in case of multiple drives installed side by side.
- Using the driver in the sealed control box will cause the temperature in the control box to rise abnormally. In order to meet the requirements for the operating temperature range around the driver, please consider configuring a cooling device.

Grounding

- Be sure to ground the ground terminal. If the grounding is not sufficient, the driver will not only be unable to give full play to its own functions, but also may cause safety problems such as wrong actions due to electric shock or interference.
- When there is a coating on the installation part of the cabinet body corresponding to the driver, please scrape off the coating before installation, which will help prevent noise.

Wiring

- Please confirm the correct wiring. Improper or wrong wiring will cause the motor to lose control or burn out. In addition, do not let conductive objects such as wire scraps fall into the driver during installation and wiring operations.
- ▶ When the wire is bundled and inserted into the metal tube for use, the allowable
- current of the wire will decrease due to temperature rise, thus causing burns. Please confirm the current reduction factor before selecting wires.
- When using stranded wires, please use insulated rod terminals
- or insulated round terminals totidy up the wires. If used inan uncluttered state, unexpected accidents or injuries such as electric shock or leakage may occur.
- When wiring the driver, please set the cable downward (asshown inthe right figure) to prevent liquid from flowinginto the driver along the cable, which may cause damage to the driver.

Others

- Do not apply vibration or impact (more than 5.88 m/s²) to the product, do not place the product in a place where dust, metal scraps, oil mist and other foreign matters accumulate, do not place the product in liquids such as water, oil, cutting fluid, etc., do not allow the product to get close to combustible materials or corrosive gasoline (H2S, SO2, NO2, Cl2, etc.), and avoid storing or using the product in flammable gas and other similar environments.
- The power supply for molded case circuit breaker (MCCB) must be set. In addition, the ground wire terminal or ground wire must be grounded.
- Due to possible wrong actions when turning on the power supply, please do not approach the motor and the machine driven by the driver.
- ▶ When running at high velocity, please set a stop time of about 10min when the dynamic brake is activated.
- Please make sure that the terminal bbrake screw and the ground wire screw have been fully tightened.

2.2 Installation of servo motor

Installation site

- Please install the motor in a site that meets the following conditions as its service life will depend on the quality of the installation site.
- ▶ Install this motor within a room free from rain and direct sunlight.
- ▶ Do not use this product in an environment with corrosive gas or liquid.
- Do not use this product in an environment with flammable gas or near combustible materials.
- Do not install this product in a place with high temperature, humidity, dust, cutting fluid, oil mist, metal dust, etc.
- Please install this product in a place with good ventilation, free from moisture, oil or water intrusion, and away from heat sources.
- ▶ Please install this product in a place convenient for inspection and cleaning.
- ▶ Please install this product in a vibration-free place.

Environment	al condition
Item	Conditions
Altitude	The altitude shall be less than 1000m, in case of an altitude of 1000m and above, the product should be derated in use
Temperature	0° C ~40 $^{\circ}$ C (No condensation)
Save	-20° C ~60 $^{\circ}$ C (Maximum temperature guarantee: no condensation at 80 $^{\circ}$ C for 72
temperature	hours)
Humidity	Less than 90% RH (no condensation)
Vibration	Less than $49\text{m/s}^2(5\text{G})$ when rotating, less than $24.5\text{m/s}^2(2.5\text{G})$ when stopping
Impact	Less than 98m/s ² (10G)
IP grade	IP67(The through part of the axes, except the connecting terminal part of the motor connectorr)

* 1Ambient temperature refers to the temperature 5cm from the motor.

* 2 Allowable temperature for a short time including transportation factors.

Installation precaution

Installation direction

It is acceptable to install the motor vertically or horizontally, subject to the following requirements.

① Horizontal installation

Turn the cable outlet downward to prevent oil and water from penetrating into the motor. 2 Vertical installation

Motor Motor

When a motor with reducer is installed axially, please use a motor with oil seal to prevent the reducer oil from penetrating into the motor.

Mechanical coupling

When installing or removing the coupling at the shaft end of the motor, do not directly strike the shaft end with a hammer(If installed at the shaft end on the negative load side, the encoder will be damaged).

 Sufficient coaxiality shall be required (otherwise vibration or damage to bearings and encoders may occur).

 When the motor shaft is running without grounding, depending on the condition of the motor and the installation environment, electrical corrosion

and excessive bearing sound may occur on the motor bearing, which should be confirmed and checked.

Oil and water protection

- Do not use cables in oil or water.
- Please set the cable outlet downward.
- Do not use in an environment where oil and water often splash down on the motor body.
- When used in combination with reducer, please use a motor with oil seal to prevent oil from penetrating into the motor from the extension of the shaft.

Stress of cable

- Do not stress the outgoing and connecting part of the cable due to bending and self weight.
- Especially when moving the motor, use the trunk cable which can be stored in the cable tray. Minimize the bending stress of the cable.
- Increase the bending radius of the cable as much as possible, and make sure it is more than 10 times of the cable processing outer diameter.

Connection

- During installation and wiring operation, do not let conductive objects such as wire chips fall into the connector.
- During wiring, make sure that the connector pins are correctly arranged.
- Please fully avoid the stress applied to the connector due to the bending of the cable, which may cause damage to the connector.
- Please make sure that the grounding of the motor is reliably connected with the driver to prevent noise or wrong action due to electric shock or other safety issues.

Chapter 3 Peripheral Devices and Wiring

3.1 Diagram for wiring of peripheral devices

Description on system wiring and key points

Key points of wiring:

- Wiring operations shall be carried out by electrical engineering experts.
- Do not switch on the power supply before the wiring operation is finished, so as to avoid electric shock accidents.
- ▶ Please note that connector CN5 has high voltage to avoid electric shock.
- Please make sure the connector is inserted until a sound indicating that it get locked.

In order to ensure a good EMC environment, be sure to use a single point grounding mode as shown in the figure

3.2 Selection of cable and peripheral accessories List of cable supporting driver and motor

List of cable supporting d			T (T)	
Model of Servo Motor	Name	Туре	Long(L)	
			3 m	EL-MSA00-03-E
				EL-MMA00-03-E
			5 m	ELMSA00-05-E
	Motor with brake	5 m	EL-MMA00-05-E	
	Motor		10m	ELMSA00-10-E
	main			EL-MMA00-10-E
	circuit		20	EL-MSA00-20-E
	cable		20m	EL-MMA00-20-E
	Motor without	3 m	EL-MMA00-03-E	
			5 m	EL-MMA00-05-E
EAM-SF/TF/TH-A5,01,02,			10m	EL-MMA00-10-E
04,06,08,10			20m	EL-MMA00-20-E
50W,100W,200W,400W,			3 m	EL-PE700-03-E
600W,750W,1000W		5 m	EL-PE700-05-E	
		encoder cable	10m	EL-PE700-10-E
			20m	EL-PE700-20-E
		Communication	3 m	EL-PI700-03-E
	Encoder	incremental	5 m	EL-PI700-05-E
	cable		10m	EL-PI700-10-E
		encoder cable	20m	EL-PI700-20-E
		Communication	3 m	EL-PA700-03-E
			5 m	EL-PA700-05-E
		absolute value encoder cable	10m	EL-PA700-10-E
			20m	EL-PA700-20-E

Servo option		
Model of Servo Motor	Name	Order
EAM-SF/TF/TH-A5,01,	Standard cable connector for motor main circuit	EU-M00
02,04,06,08,10	Cable connector for electric motor main circuit	EU-M01
	2500 line saving encoder cable connector	EU-P00
400W,600W,750W,1kW	Communication absolute encoder cable	EU-P01
	Battery options	EU-B00

Communication cable option					
Model	Description				
EL-CN700-01-E	PC communication cable of servo driver				
EL-CN01-A3-E	Multi-machine parallel communication cable for servo driver				

Control cable option	
Model	Description
EL-CA700-01-E	Servo CN1 I/O signal cable
EU-C01	Servo CN1 terminal accessories

Description on definition of driver terminal

Des	Description on CN1 Pins					
Pin No.	Name	Abbreviation	Description			
	Internal 24V Power Supply Positive	+24V	It is only used for internal DI and pulse input pull-up, and cannot supply power to external relay brake etc.			
2	Digital Output 1 (Negative)	DO1-				
1	Digital Output 2 (Negative)	DO2-	Digital output can be freely configured with functions and output logic according to			
4	Digital Output 3 (Negative)	DO3-	user'srequirements.When wiring, if relay needs to add freewheeling diode, if opt coupler			
	Digital Output 4 (Negative)	DO4-	accepts, it needs to connect current limiting resistor. Incorrect wiring will cause the DO port hardware to burn out.			
6	Digital Output 5 (Negative)	D05-				
1	Pulse Direction Signal (Negative)	SIGN-	Fordifferential input,themaximum frequency is4MHZ and 500KHZ for open-circuited			
X	Pulse Count Signal (Negative)	PULSE-	collector.			
9	Pulse Command Input Internal Resistor Common Terminal	PULLHI	When the pulse connection is open-circuited collector, PNP pin is connected to COM-, and NPN to 24V			
	Frequency Division Output Phase B (Positive)	PKO+	The number of pulses output by one revolution of the motor is set by P02.03, and the number of frequency division outputs is set to be the			
11	Frequency Division Output Phase A (Positive)	PA() +	of frequency division outputs is set to be the number after 4 times of frequency multiplication.			
12	Collector Output	OCZ	The motor rotates one revolution to output a Z pulse, the level is set by P02.05, and the output is open collector.			
13	485 Communication (Positive)	RS485+	RS485+			
14	5V Power Supply Reserved by Manufacturer	+5V	The manufacturer reserves 5V power supply, which is forbidden to use.			
15	5V Power Supply Reference Ground Reserved by Manufacturer	GND	The manufacturer reserves 5V power supply, which is forbidden to use.			
	Ground Corresponding to 24V	СОМ-	Internal 24V power reference ground.			
17	DI Common Input	COM+	When DI uses internal 24V power supply, this			

TD100P series servo user manual

-			I DTOOP series servo user manuar
Pin No.	Name	Abbreviation	Description
	Terminal		pin is short circuited to internal 24V pin (1).
	Digital Output 1 (Positive)	DO1+	For digital output, functions and output logic can be freely configured according to user's
19	Digital Output 2 (Positive)	DO2+	requirements. When wiring, if the relay needs to be added
1 2 11	Digital Output 3 (Positive)		with freewheeling diode, such as optocoupler, it needs to be connected with current limiting
	Digital Output 4 (Positive)	DO4+	resistor. Incorrect wiring will cause the DO port
22	(Positive)	DO5+	hardware to burn out
23	Signal (Positive)	SIGN+	Incaseof differential input, the maximum frequency is 4MHZ, and 500KHZ for
24	(Positive)	PULSE+	open-circuited collector.
25	Frequency Division Output Phase B (Negative)	PBO-	The number of pulses output for one revolution of the motor is set by P02.03, and the number of frequency division outputs is set to be the
26	Frequency Division Output Phase B (Negative)	PAO-	number after 4 times of frequency multiplication.
		GND	When the pulse command input is in differential mode, the signal ground is connected with the signal ground of the upper computer, and the pulse frequency division output signal ground is connected with the signal ground of the upper computer.
28	485 Communication (Negative)	RS485-	RS485-
/9	Analog Output Reference Ground	GND	Analog output reference ground.
30	Analog Input	AI	The other end of the analog input channel is connected to pin 29.
31	Internal 24V Power Reference Ground	COM-	Internal 24V power reference ground
32	Digital Input 8	DI8	
33	Digital Input 7	DI7	For digital quantity input, functions and input level logic can be freely configured according
34	Digital Input 8	DI6	to user's requirements. During wiring, internal
35	Digital Input 9	D15	24v or external 24V can be selected according
36	Digital Input 4	DI4	to different working conditions, and different connection modes can be selected according to
37	Digital Input 3	DI3	PNP type and NPN type.
38	Digital Input 2	DI2	

TD100P series servo user manual

Pin No.	Name	Abbreviation	Description
39	Digital Input 1	DI1	
40	Frequency Division Output Phase Z(Negative)		For one revolution of the motor, a z pulse is
41	(Positive)	PZO+	output and the level is set by P02.05, with a differential 5V signal to be output.
	485 Communication (Negative)		Internal connection to pin 28
43	485 Communication (Positive)	RS485+	Internal connection to pin 13
44	RS485 Communication Signal Ground	GND	RS485 Communication Signal Ground
3.3 Wiring of connector CN1

Connection with upper controller

Example for typical wiring of connector CN1

Connection of RS485 communication signals			
Symbols	Connector pin number	Function	
485+	43	RS485 I/O signal	
485-	42		
GND	44	RS485 communication station	

RS485 communication is used to connect one host and multiple TDS-R*, with P09.00 for each TDS-R* to be set to the value of $0 \sim 127$.

Note:

To determine the location of the signals between the servo drives, connect the GND of each drive

Connecti	on of control input signal		
Symbol	Function	Connector pin	Description
DI1	SRV_ON	39	Servo enable
DI2	POT (Non default)	38	Positive limit
DI3	NOT (Non default)	37	Negative limit
DI4	JogCmdP(Non default)	36	Positive jog
D15	JogCmdN(Non default)	35	negative jog
DI6	A_Clr (Non default)	34	Failure reset
DI7	ORGP(Non default)	33	home switch
DI8	Execute_Homing(Non	32	Trigger homing enable
+24V	+24V	1	Internal 24V power supply, with a
сом-	COM-	31	voltage range of +20~28V, and a
COM+	COM+	17	power supply input(12V~24V)

Taking DI1 as an example, other DIs are connected in the same way. When the higher-level device is a relay output

When the higher-level device is NPN open-circuited collector output

When the higher-level device is PNP open-circuited collector output

Note: Incompatible with PNP input to be used in combination with NPN input.

Connection of pulse command input signals			
Symbol	Connector pin	Description	
PULSE+	24	Pulse instruction input	
PULLHI	9	Common terminal of built-in resistor for pulse	
GND	27	Signal ground	

The driver is compatible with the long-line driver interface and the open-circuited collector output interface, with the corresponding input maximum frequency and minimum pulse width as shown in the following table:

PULS/SIGN signal pulse	Allowable input maximum	Min necessary pulse
input mode	frequency	width(µs)
Open-circuited collector interface	200k pulse/s	2.5
Long line differential driver	4M pulse/s	0.125

Note: If the output pulse width of the upper device is less than the minimum pulse width value, the driver will receive the pulse incorrectly.

In order to reduce the impact of noise, please use twisted pair shielded wire, with the wiring length to be controlled within 1 m.

When the host device is a differential driver output

This is a signal transmission mode that is not easily affected by noise, which is therefore recommended to improve the accuracy of signal transmission.

When the upper device is open-circuited collector In case of using the driver's built-in 24V power supply

In case of using an external 24V power supply and the driver's internal resistor

When using external 12V and 24V power supplies and external resistors

Connection of analog command input signals			
Symbol	Connector pin	Description	
AI	30	Ordinary analog input signal, with a resolution of 12 bits and an input voltage of $-10V \sim +10V$.	
GND	29	Analog input signal ground.	

The corresponding command of Analog input voltage value is set by P05 group.

Maximum allowable input voltage range: -10V~+10V;

A/D conversion resolution: 12bit;

Input impedance: appr $9k\Omega$.

Connection of control output signal

Symbol	Function	Connector pin	Description
DO1 +	Alm+	18	Fault output signal
DO1-	Alm-	2	
DO2+	B1k+	19	Brake signal
DO2-	Blk-	3	
DO3+	Son+	20	Servo enable status output
DO3-	Son-	4	

DO4+	INP+	21	Positioning OK output	
DO4-	INP-	5	Positioning OK output	
DO5+	HomeOK+	22	Homing OK output	
DO5-	HomeOK-	6		

Taking DO1 and DO5 as examples, other DOs are connected in the same way.

Connec	Connection of frequency division pulse output signal			
Symbol	Connector pin	Function		
PAO+	11	Phase-A frequency division output signal		
PBO+	10	Phase-B frequency division output signal		
PZO+	41	Phase-Z frequency division output signal		
ocz	12	Phase-Z frequency division output signal		
GND	27	Home pulse open-circuited collector output signal ground		
+5V	14	Manufacturers-reserved 5V power supply shall not be		
GND	15	used		

The driver provides differential driver interface and Z-phase pulse open collector output interface.

Differential driver output

The encoder signal outputs (A phase, B phase, Z phase) after frequency division processing are differentially output through a long-line driver.

When receiving with a long-line receiver on the upper device side, be sure to install a termination resistor (about 330 Ω is recommended) at the input of the long-line receiver. When receiving with opt coupler circuit, please use high-velocity optocoupler and limit the line current to 20mA.

Open-circuited collector output

This interface is the open-circuited collector interface of encoder phase-Z frequency division output signal and is non-insulated interface.

Since the pulse width of phase-Z signal is narrow, please use a high-velocity photocoupler to receive the signal on the upper device side.

Connection	n of brakesig	gnals	
Symbol	Function	Connector pin	Description
DO2+	Blk+	19	Brake signal
DO2-	Blk-	3	Diake signal
Serve मिइर् Maximun 30V,50m		Be sure to access the contir install it in the direction show drive will be damaged VDC12~24V 19 3 user-s	

Note: The 24V power supply should be in the scope of supply of users.

Precautions for use and wiring of brakes

- ► For the length of the motor brake cable, the voltage drop caused by cable resistance should be fully considered, and the input voltage should be at least 21.6V for brake operation.
- For the brake, it is better not to share power with other electrical appliances to prevent the brake from misoperation due to voltage or current reduction caused by the work of other electrical appliances.
- Cables with specifications above 0.5 are recommended.
- ► See Section 5.2 for timing chart of brake enable and relevant function code settings.
- The braking mechanism built into the servo motor is a fixed special mechanism of non-energized action type, which cannot be used for braking purposes and can only be used when the servo motor is kept in a stopped state.
- ► After the servo motor is shut down, turn off "servo enable" (S-ON).
- When the motor with the built-in brake is running, the brake may make a click sound, and the function is not affected.
- When the brake coil is energized (the brake is in an open state), magnetic flux leakage may occur at the Axes end and other parts. Please pay attention when using magnetic sensors and other instruments near the motor.

3.4 Wiring of connector CN2

Connection with upper PC

CN2 is the communication interface between the driver and PC for connecting the computer and USB, which can be used for parameter setting change and monitoring, etc.

PC communication cable: USB mini-B (commercially available)

Symbol	Connector pin	Description	
V-BUS	1	An empty pin, which should not be connected	
D-	2		
D +	3	Data signal line	
ID	4	Not to be connected	
GND	5	Signal ground	

3.5 Wiring of connector CN3

Application	Connector pin No.	Symbol	Description
	1	5 V	Power supply for encoder.
	2	GND	Power ground, which should be connected to the internal signal ground of the driver.
	3	A+	Encoder's phase A signal (twisted pair)
	4	A-	Encoder's phase-A signal (twisted pair)
	5	B+	Encodor's phase D signal (twisted pair)
9 7 5 3 1 N 10 8 6 4 2	6	В-	Encoder's phase-B signal (twisted pair)
	7	Z+	Phase 7's zero pulse signal (twisted pair)
	8	Z-	Phase-Z's zero pulse signal (twisted pair)
	9	PTC+	Temperature sampling signal (no PTC
	10	СОМ	Temperature sampling signal reference
	Housing	PE	To be connected with PE terminal inside

Connection with incremental encoder

3.6 Wiring of connector CN4

Application	Connector pin number	Symbol	Description
	1	5 V	Encodor + 5V rowor overly
	2	GND	Encoder +5V power supply
	3	PS+	Conial data tuanaasining signal
	4	PS-	Serial data transceiving signal
	5	CLK+	Serial clock transmission signal
	6	CLK-	
	7	HALL-U	
	8	HALL-V	
	9	HALL-W	
	10		Empty
	Housing	PE	To be connect with PE terminal inside the driver.

Connection with bus encoder

In case of application of single-ring absolute position encoder:

Application of multi-ring absolute position encoder:

Key Points of wring for communication encoder

• The cable length between the driver and the motor shall be within 20 m.

• The distance between the main circuit wiring and the main circuit wiring shall be more than 30cm, and they shall not be bundled together in the sleeve.

Please set the input power voltage of the connector on the encoder side within the range of dc4.90v ~ 5.25V.

• Tips for making encoder cable by yourself:

① Refer to the wiring diagram.

(2) Wire: the core diameter of the wire used shall be more than 0.18m (awg24), and it shall be equipped with bending resistant twisted pair with shielding layer.

3 Twisted pair shall be used for wiring relative to signal / power supply.

④ Shielding treatment

-Shielding layer on driver side: to be welded to the shell of connector CN4.

-Shielding layer on motor side: (pin 1 of AMP 9 pin of SF series motor)

(5) Do not connect the redundant terminals of each connector

3.7 Wiring	of connector CN5									
Connection of	of main circuit termin	nal								
Description	Description on definition for interface of connector CN5									
Terminal	Terminal name	Terminal function								
U, V, W	Servo motor connection terminal	The connection terminal of servo motor shall be connected with U, V and W of motor.								
L1、L2	Main circuit power input terminal	For single-phase power input of main circuit, AC220V power supply shall be connected between L1 and L2.								
Ν	DC bus negative voltage terminal	Do not connect the DC bus terminals of the driver when the single unit is running.								
P, C	Braking resistance connection terminal	External brake resistance connection terminal.								
	Grounding	Two ground terminals, to be connected with a power supply grounding terminal and a motor grounding terminal.								

For the wiring of the main circuit and its precaution, please refer to Chapter 3 \rightarrow Description on System Wiring and Its Main Points (P23).

Selection of braking resistors and precautions for wiring;

- Do not connect the external braking resistor directly to the positive pole P and negative pole N of the bus, otherwise it will cause explosion and fire.
- Please confirm that braking resistor's parameters P02-20, P02-21 and P02-22 have been correctly set before using the driver.
- Please install external braking resistor on non-combustible materials such as metal.

3.8 Wiring of connector on motor side

Wiring of cables for EAM-S/T series motor

Connection of encoder cable for EAM-S/T series motor

Connection of power cables for EAM-S/T series motor

Outline sketch of connector	This depend on		
Distribution	Pin No.	Signalname	
of terminal pins of	1 2	U V	Power line of motor
power lines	3 4	W PE	Ground wire

Chapter 4 Display and Operation of Panels

4.1 Introduction to keys on panel

The panel of the servo driver consists of a display (LED digital tube) and keys, which can be used for various types of display of the servo driver, with the Group-P parameter setting for as an example to show the typical functions of the display keys as follows:

	Table 4-1 Introduction to typical functions of keys
Keys	Typical functions
MODE	Used to change operating modes and parameter
UP	Used to increase the selected number (flashing number)
DOWN	Used to decrease the selected number (flashing number)
SHIFT	Used to move the selected number (flashing number) to the left or turn
	the page to the upper position.
SET	Used to enter the next menu or set parameters, etc.

4.2 Change of operation mode

The servo running status is displayed on the panel by default.

Figure 4-1 State Switching of Panel by Default

Press the key Mode to switch the level-1 menu of the panel, and after powered on, the default display menu of the panel is the status display.

Status display: To display the current status of the servo:

Figure 4-2 Operation and Display of Level 1 Menu on Panel

4.3 Setting of parameters for group P

Parameter setting: Let servo enter parameter setting mode. This group is used when servo parameter need to be changed, with P02.03 as an example:

Fig. 4-3 Procedures for Setting Parameters

4.4 Display of parameter for group U

Monitoring display: An observation group for servo operation parameter, in which real-time displays such as servo velocity, DI, DO, current, temperature, etc. are provided

For example, select U00.20 to display the number of servo input pulses

Fig. 4-4 Description on Operation of Parameter for Group U

For example: Select U00.01 to display the DI status of servo input

Figure 4-5 Description on DI Display

Note: The rightmost display of DI status indicates DI1 status, which, starting from the second on the right of DI2 status, sequentially corresponds to DI1 to DI8 from the right to the left.

4.5 Description on use of parameter of group F

Monitoring display: Servo auxiliary function group

For example, use of the jog function on the panel.

Figure 4-6 Description on Operation of Commissioning Panel

For example: Function of inertia identification

4.6 Fault display

Fault display :

Display	Name	Contents
AL.10.1	Current warning code	 AL.: There is currently a drive failure or warning 10.1: Fault code (encoder fault)

AL.XX.Y, where XX indicates the fault category and Y indicates the sub-fault code.

Chapter 5 Control and Timing Sequence

5.1 Diagram for timing sequence of powering on

Diagram for timing sequence of powering on(timing sequence of receiving servo enable signal)

Figure 5-1 Timing sequence of receiving servo enable signal when powering on

t2 is the charging time (80ms) of the internal driver bootstrap circuit; the host devicecan not issue a command until it receives the enable DO fed back from the servo, or will delay for more than 80 ms.

5.2 Diagram for timing sequence of brake enable

Fig.5.2 Diagram for Timing Sequence of Servo enable with Brake

when Receiving Command

t1 is the action time of the brake.

t2 is the time set by P02.19, and before which the command from the host devicecannot be accepted

t3 is the time set by P02.1A, which is the enable time of the delay time period from when the brake is effective to when the motor is de-energized; when the delay time reaches the set time t4(P02.1C) or the velocity is less than (P02.1B set), the brake is effective

t5 is the charging time of the internal servo bootstrap circuit

Relevant function code of brake

P02.18 Brake enable	Setting range	Unit	Factory default		Related mode	
	0~1	-	0	Р	S	Т

Notes :

0-Not enable brake

1-Enableing brake

After enable brake, use FunOut.6 (BKout) output to control external relay (P06.02=6)

2.19 Delay from brake effective to command	Setting range	Unit	Factory default		Related mode	
ceiving	0~500	ms	200	Р	S	Т

Note:

After receiving the servo enable command, the brake is ineffective. Due to the action of the brake relays, the command can be received with a delay of some time.

P02.1A Delay from brake	Setting range	Unit	Factory default		elate node	
effective to motor getting off	50~1000	ms	150	Р	S	Т

Note:

Effective movement of the brake; Due to the delay in the operation of the brake relay, the output of the motor needs to be disabled for a period of time.

P02.1B Effective velocity	Setting range	Unit	Factory default		elate node	
threshold of brake	20~300	rpm(*mm/s)	30	Р	S	Т

Note:

In order to ensure that the brake can effectively execute the braking action after the velocity is lower than the set value

* Represent a linear motor unit

P02.1C Delay from servo enable command to brake	Setting range	Unit	Factory default		Related mode	
effective	1~1000	ms	500	Р	S	Т

Note:

After the servo receives the external disable command, it will delay for a period of time to perform the braking action

Figure 5-3 Diagram for Timing Sequence of Servo Shutdown

Function codes related to shutdown

	P02.10 Disable shutdown mode	Setting range	Unit	Factory default	Relate mode		
	mode	-2~2	-	0	Р	S	Т
N	otes:						

The mode of servo disable shutdown should be changed according to the actual situation

- -2 : Slope shutdown, with DB braking
- -1 : DB shutdown DB status
- 0 : Free shutdown, keeping operating freely.
- 1 : Slope shutdown, keeping operating freely.
- 2 : Zero-velocity shutdown, keeping operating freely.

	P02.11 Over travel stop mode	Setting	Unit	Factory	R	elate	ed		
		range	Unit	default	r	mode			
		0~1	-	1	Р	S	Т		
(Changes are generally not recommended								

	P02.12 Non-resettable failure shutdown mode	Setting range	Unit	Factory default		elate node			
		0~2	-	1	Р	S	Т		
Ν	Notes:								
S	hutdown mode in case of non-re	esettable failur	e						
0-	shutting down freely								
1.	1-DB shutdown free state								
2-	2-DB shutdown, keeping DB state								

TD100P series servo user manual

	P02 13 Pagattable fault	Setting	Unit	Factory	R	elate	ed .
	P02.13 Resettable fault shutdown mode	range	Unit	default	r	node	÷
	snutdown mode	-4~3	-	1	Р	S	Т
N	otes	•					

Notes:

Resettable shutdown mode in case of failure :

-4-Emergency torque shutdown, keeping DB State

-3-Slope shutdown, keeping DB State

-2-Slope shutdown, keeping DB State

-1-DB shutdown, keeping DB state

0-Free shutdown, keeping operating freely.

1-Slope shutdown, keeping operating freely.

2-Slope shutdown, keeping operating freely.

3-Emergency torque shutdown, keeping operating freely

P02.14 Shutdown mode and	Setting range	Unit	Factory default		elate node	
shutdown state switching velocity condition value	10~1000	Rpm (*mm/s)	100	Р	S	Т

Notes:

When the actual running velocity of the motor is less than the threshold value, it is judged as a shutdown state.

*stands for linear motor's unit

P07.20 Slope shutdown acceleration and deceleration	Setting range	Unit	Factory default	Relate mode		
time	0~10000	ms	50	Р	S	Т

Notes:

Slope shutdown acceleration and deceleration time when the fault shutdown or servo off shutdown occurs

P07.21 Emergency shutdown acceleration and deceleration	Setting range	Unit	Factory default	Relate mode		
time	10~1000	ms	5	Р	S	Т

Notes:

Acceleration and deceleration time in case of emergency shutdown mode

	P07.22 Emergency torque shutdown deceleration	Setting	Unit	Factory	Relate		ed	
		range	0 mit	default	r	node		
		0~3000	0.1%	500	Р	S	Т	
Change of slope torque in case emergency torque shutdown								

5.4 Release Function Setting

When the inertia of external load is large (more than 5 times) and there is a large deceleration, it is necessary to use the release function to release the excessive bus voltage. Release the resistance value and power of the resistor appropriately as the instructions.

Release-setting related function codes

	P02.20 Release resistor's use	Setting range	Unit	Factory default		elate node	
	mode	0~3	-	1	Р	S	Т
N	otes:						
0-	Built in resistor						
1 -	External resistor						
2-	Air cooling of external resistor						
3-	No release						

P02.21 External release resistor's power	range	Unit	default	Rela mo		
	1~65535	W	800	Р	S	Т

Notes:

If the power is too small, the release resistor will overheat or overload

P02.22 External release	Setting range	Unit	Factory default		elate node	
resistor's resistance value	1~1000	Ω	50	Р	S	Т

Notes:

The resistance value of the release resistor should be selected appropriately and should generally be 40-50 ohms; if the value is too small, the driver will be over-current, which will greatly affect the release effect.

P02.26 Resistor's heat	Setting range	Unit	Factory default		elate node	
dissipation coefficient	1~1000	0.1%	600	Р	S	Т

Notes:

The release resistor's resistance value and heat dissipation coefficient. The larger the setting, the better the heat dissipation effect of the release resistor, and the overload of the release resistor can be limited to a certain extent.

Chapter 6 Control Mode

All control modes are described as follows: :

Fig. 6-1 Block Diagram for 3-Loop Control

By processing the input (pulse, analog quantity, communication, etc.) and feedback signals, the driver can accurately and rapidly control the position, velocity and torque of the motor, and support the real-time switching control of the above modes, of which, the position control has found widest application in servo system.

6.1 Position Control Pulse Mode

Fig. 6-2 Diagram for Source of Position Mode Pulse Command

The position control pulse mode mainly includes the following steps:

- 1. Installation wiring includes: servo enable (SRV_ON), pulse input (Puls+-, Sign+-), positioning OK (INP), servo enable output (Son), etc.
- 2. Set operation mode (P02.00 = 1), position mode
- 3. Set pulse input mode (P03.02), electronic gear ratio, etc.
- 4. Set DI and DO related functions
- 5. Other basic settings (release resistor, shutdown mode, etc.)

6.1.1 Position	Control	Pulse	Mode	Input	Setting	

Impulse command input settings

Pulse input

Electronic gear ratio

Pulse command filtering

Figure 6-3 Position Mode Pulse Command Input Settings

	P03.00 Command pulse	Setting range	Unit	Factory default	Related mode		
	format	0~1	-	0	Р	S	Т
0	otes: -Impulse command -Internal position						

P03 for	3.02 Comma mat	nd pulse		Setting range		Unit	Factory default	r	elate node	e
				0~3		-	0	Р	S	Т
Notes:									_	
	Command format setting	Pulse format	1	positive pulse diagram		negative	pulse diagi	am		
	0	Pulse + direction positive logic	PUL			PULSE	Low			
	1	Pulse + direction negative logic	PUL			PULSE SIGN _↔	High			
	2	Phase A+Phase B Orthogo nal Pulse Quadrup le Frequenc y					ahead of Pl by 90 °	hase		

3	CW+CC W	cw	
5		cw	

	P03.04 Input pulse hardware filtering time	Setting	Unit	Factory	Related		ed		
		range	Unit	default	mode		e		
		0~255	25ns	10	Р	S	Т		
Notes:									
Tł	ne hardware filtering time can be s	et according to	the frequency of	f the input pu	lse,	whic	ch		
са	n filter out external interference s	ignals to a certa	in extent.						
Ge	eneral situation:								
Set to 4 in case of more than 3M									
Se	Set 10 in case of less than 1M								

Set to 20 in case of less than 500K

	-	-	~	
6.1.2 Electronic Gear	Ratio in	Position	Control	Pulse Mode

Number of pulses in actual operation of the motor:

Input	pulses *	Electronic gear ratio numerator Electronic gear ratio denominator	=	Actual operating pulse number
-------	----------	--	---	-------------------------------

P03.10 Number of command pulses per revolution of	Setting range	Unit	Factory default	Related mode		
motor	0~8388608	-	1000	Р	S	Т

Notes:

Directly specify the number of command pulses to be sent for one revolution of the motor. The numerator equivalent to the electronic gear ratio is P03.10, and the denominator of the electronic gear ratio is the number of pulses per revolution of the encoder

*Notes to linear motor

P03.10 Number of command	Setting	Unit	Factory	Re	elate	d
pulses for motor moving one	range	Unit	default	mode		
pole distance (N-N)	0~8388608	-	0	Р	S	Т

Notes:

Directly specify the number of command pulses to be sent for one pole distance of movement of the motor .

The numerator equivalent to the electronic gear ratio is P03.10, and the denominator of the electronic gear ratio is one pole distance pulse number of grating scale (magnetic grating scale)

If P03.10 = 0, P03.12 and P03.14 take effect.

TD100P series servo user manual

	Setting	Unit	Factory	Related		ed :
P03.12 Electronic gear ratio 1	12 Electronic gear ratio 1 range	default	mode		2	
(numerator)	1~	-	10	Р	S	Т
	1072741824					

Note:

Setting thenumerator for the 1st group of electronic gear ratios.

P03.14 Electronic gear ratio 1	Setting range	Unit	Factory default		elate node	
(numerator)	1~ 1072741824	-	1	P	S	Т

Notes:

Setting the numerator for the 1st group of electronic gear ratios

	Setting	Unit	Factory	R	Related	
P03.16 Electronic gear ratio 2	range		default	mode		e
(numerator)	1~		10	D	ç	т
	1072741824	-	10	Г	3	1

Notes:

Setting the numerator for the 2nd group of electronic gear ratios.

P03.18 Electronic gear ratio 2	Setting range	Unit	Factory default		elate node	
(denominator)	1~10727418 24	-	1	Р	S	Т

Notes:

Setting the denominator for the 2st group of electronic gear ratios

Electronic gear ratio supports DI switching:

For DI input function FunIN.17 (GearSw), the first group of electronic gear ratios is used when GearSw is ineffective, and the second group of electronic gear ratios is used when GearSw is effective.

Setting range of electronic gear ratio: Rotary motor :

2.5<= $\frac{\text{gear ratio}}{\text{gear ratio}} * \frac{\text{number of pulse for one}}{\text{revolution of encoder}} <=10000000$

*Linear motor :

2.5<=	gear ratio numerator gear ratio denominator	number of pulse for one * pole distance	<=10000000
	uchommator		

Otherwise, it will alarm AL.045 electronic gear ratio setting error.

6.1.3 Position Command Filtering Setting

When the host devicepulse needs to be smoothed, software filtering can be added:

	P03.06 Command FIR filtering time constant	Setting	Unit	Factory	actory Relat			I
		range	UIII	default	n	mode		1
		0~65535	0.01ms	0.0	Р	S	Т	I

Notes:

Setting the time constant of FIR filter for position command

	P03.07 Average filtering time constant	Setting range	Unit	Factory default	2		
		1~1280	0.1ms	0.0	Р	S	Т

Notes:

Setting the time constant of the average filter for the position command (encoder unit)

6.1.4 Setting of Input and Output in Position Control Pulse Mode

Location DI input

Pulse inhibits function:

For the DI input function FunIN.18 (INH), when the INH is effective, the pulse command is no longer received.

Frequency division output setting.

P02 02 Phase of frequency	Setting	Unit	Factory	R	ed	
P02.02 Phase of frequency division output pulse	range		default	mode		
division output pulse	0~1	-	0	Р	S	Т

Notes:

Setting the phase relationship between phase-A pulse and phase-B of pulse output.

0-positive frequency division

1-negative frequency division

P02.03 Number of frequency	Setting range	Unit	Factory default		elate node	
division pulses of encoder	10~1048576	p/revolution (*p/pole)	1024	P	S	Т

Notes:

For the number of pulses of output of phase A and phase B per revolution of the motor, the number of pulses after quadruple frequency is 4*P02.03.

Unit of linear motor is p/pole.

P02.04 Selection of Z Pulse	Setting range	Unit	Factory default	Related mode
Output Polarity	0~1	-	1	P S T
Notes:				
Setting the output level when the Z-	phase pulse is e	ffective		
0- Positive polarity Output				
(Z pulse is at high level)				
1- Negative polarity output				
(Z pulse is at low level)				

Position OK output related function code

	6.2C Positioning	Setting range	Unit	Factory default		elate node	
01	mpletion range	1~65535	-	100	Р	S	Т

Notes:

At the end of transmission of the position command, when the position deviation is |<=P06.2C, and held for a time period of P06.2D, the positioning completion signal FunOut.3(INP) is output.

The Unit for this parameter is determined by P06.2E:

P06.2E=0 is user Unit, i.e. gear ratio

P06.2E=1 is encoder Unit

	P06.2D Waiting time after positioning completion	Setting range	Unit	Factory default	Relate mode		
		0~2000	ms	0	Р	S	Т

Notes:

At the end of transmission of the position command, when the

|position deviation is |<=P06.2C, and held for a time period of P06.2D, the positioning completion signal FunOut.3(INP) is output.

The Unit for this parameter is determined by P06.2E:

P06.2E=0 is user Unit, i.e. gear ratio

P06.2E=1 is encoder Unit

	P06.2E Position Reaching		Factory default	Relat mod				
	Window Unit Setting	0~1	-	0	Р	S	Т	
N	Notes:							
S	Setting the unit of the position reaching threshold							
0.	User Unit							
1.	1-Encoder unit							

6.2 Position control homing mode

The homing mode is used to find the mechanical home, the Z signal of the motor, or designate a fixed position as the home, for setting of the initial position of operation.

Description on homing function								
Related function code:								
P03 31 H	P03.31 Homing model	Setting range	Unit	Factory default	Related mode			
		0~36	-	1	Р	S	Т	
N	Notes:							

Fully compatible with the homing mode of CanOpen402 (Cia402) protocol, as shown in the following table

- 2. Operate in the positive direction to find the falling edge of the negative limit switch.
- 3. Operate in the positive direction to find the Z signal. (not to find Z signal in mode 17).

velocity switched to low velocity).

2. Operate in the negative direction to find the falling edge of the positive limit switch.

3. Operate in the negative direction to find the Z signal. (not to find Z signal in mode 18)

Operate in the positive direction to find the rising edge of the home switch(high velocity switched to low velocity).
 Operate in the negative direction to find the falling edge of the home switch (on the same

side). 3. Operate in the negative direction to find the Z signal. (not to find Z signal in mode 19)

1. Operate in the negative direction to find the rising edge of the home switch(high velocity switched to low velocity).

2. Operate in the positive direction to find the falling edge of the home switch (on the same side).

3. Operate in the negative direction to find the rising edge of the home switch.

4. Operate in the negative direction to find the Z signal. (not to find Z signal in mode 20)

(on the same side). 3. Operate in the positive direction to find the Z signal. (not to find Z signal in mode 21)

(on the same side).3. Operate in the positive direction to find the rising edge of the home switch.4. Operate in the positive direction to find the Z signal. (not to find Z signal in mode 22)

1. Operate in the positive direction to find the rising edge of the home switch(high velocity switched to low velocity).

2. Operate in the negative direction to find the falling edge of the home switch (on the same side).

3. Operate in the negative direction to find the Z signal. (not to find Z signal in mode 23)

1. Operate in the positive direction to find the rising edge of the positive limit switch.

2. Operate in the negative direction to find the rising edge of the home switch (high velocity switched to low velocity).

3. Operate in the negative direction to find the falling edge of the home switch.

4. Operate in the negative direction to find the Z signal. (not to find Z signal in mode 23)

2. Operate in the negative direction to find the rising edge of the home switch(high velocity switched to low velocity).

Operate in the negative direction to find the falling edge of the home switch.
 Operate in the positive direction to find the rising edge of the home switch.
 Operate in the negative direction to find the Z signal. (not to find Z signal in mode 24).

switch(high velocity switched to low velocity).
3. Operate in the positive direction to find the falling edge of the home switch.
4. Operate in the negative direction to find the rising edge of the home switch.
5. Operate in the negative direction to find the Z signal. (not to find Z signal in mode 25).

mode 27)

Homing mode 33 Operate in the negative direction to return to zero, with the home as the Z signal of the motor Homing mode 34 Operate in the positive direction to return to zero, with the home as the Z signal of the motor Homing mode 35 Take the current position as the home

If P03.36 is not 0, automatically run the distance of P03.36 after homing.

P03.32 The high speed of	Setting range	Unit	Factory default		elate node	
homing	10~6000	Rpm (*mm/s)	100	Р	S	Т

Notes:

The velocity of the homing high-velocity stage.

The linear motor's Unit is mm/s.

	P03.33 The low speed of homing	Setting range	Unit	Factory default	Relate mode		
		10~6000	Rpm (*mm/s)	10	Р	S	Т
Notes:							

The velocity of the homing low velocity stage.

The linear motor's Unit is mm/s.

P03.34 Time limit of homing	Setting range	Unit	Factory default		elate node	
	0~1000	ms	10	Р	S	Т

Notes:

Set the acceleration and deceleration of the homing velocity.

]	P03.35 Time timeout of homing	Setting range	Unit	Factory default	Related mode		
]		1~65535	10ms	50000	Р	S	Т

Notes:

Homing timeout AL.054, the home resets after shutdown, after need to reset once again the home,

P03.36 Homing offset	Setting range	Unit	Factory default	Relate		
	-1073807359 ~1073807359	р	0	Р		Т

Notes:

The offset of the operation after homing, with the unit as the encoder unit,

Description of touchprobe function

The function that uses DI8 to capture sensor signals at high velocity for accurate positioning (software version 2.2 or above is compatible with this function) Related function code:

	Setting	Unit	Factory	R	elate	ed
P03.38 Touchprobe move	range	Onit	default	ľ	node	e
length	-1073807359		10000	р	C	т
	~1073807359	р	10000	Р	3	1
	•					

Notes:

The displacement of the probe (DI8) at the probe position after triggering, which is the Unit of the encoder, and the electronic gear ratio has no effect.

P03.3A Touchprobe move	Setting range	Unit	Factory default		elate node	
speed	0~6000	Rpm (mm/s)	1000	Р	S	Т

Notes:

The velocity of operation after probe (DI8) is triggered

P03.3B Touchprobe move acceleration and deceleration	Setting range	Unit	Factory default		elate node					
time	0~60000	ms	100	Р	S	Т				
 Notes: The velocity of operation after probe (DI8) is triggered										

D02 2C Configuration of	Setting	Unit	Factory	R	ed	
P03.3C Configuration of	range	Onn	default	1	node	•
touchprobe	0~0xFFFF	-	0	Р	S	Т

Notes:

Configuration of probe function:

This setting is as follows:

The function code is set as 16bit

4 3	2	1
-----	---	---

The first bit its the bit for the probe enable/disable, with 0 for disable and 1 for enable;

The second bit is the bit for the probe edge trigger setting, with 0 for rising edge triggering,

1 for falling edge triggering, and 2 for rising edge or falling edge triggering;

The third bit is the bit for the probe mode setting, with 0 for that the probe will automatically

return to its original operating state at the end of operation, and 1 for that it will not return to

its original operating state until receiving FunIN.20 probe release signal;

The fourth bit is kept at the probe locking time, and the output of FunOut17(ProbeLock) is effective.

For example:

Set to 0x0001 to enable the probe function, and the trigger is effective for the rising edge, which, after the trigger operation is completed, can automatically receive external commands and will also respond to the probe trigger again.

- Set to 0x0011 to enable the probe function, and the trigger is effective for the falling edge, which, after the trigger operation is completed, can automatically receive external commands and will also respond to the probe trigger again.
- Set to 0x0111 to enable the probe function, and trigger is effective for the falling edge, which will not return to its original operation state until receiving the FunIN.20 probe release signal.

	P03.3D Probe filtering time	Setting range	Unit	Factory default	Relate mode		
		0~255	25ns	5	Р	S	Т

Notes:

When the filtering time of probe hardware is amplified, interference can be prevented, but a certain degree of delay will be introduced. If the setting is too small, interference will easily occur and high-precision sensors are required.

It is effective after being powered on again.

Description on Internal Position Function

In general, the internal position is used for internal testing, including: the internal position of 16 segments, of which, the displacement and velocity of each segment's operation, as well as the acceleration and deceleration time, waiting time and operation position attribute thereof, can be set separately.

Related function code:

P10.00 Internal position	Setting	Unit	Factory	R	ed		
1	range		default	r	node	e	
operation mode	0~1	-	0	Р	S	Т	

Notes:

To run internal commands, it is necessary to set P02.00=1 and P03.00=1; after given a servo enable signal and given FunIN.6(Execute_PP), the operation should be set according to the parameters of Group P10

When P10.00 is set to 0, the single operation ends after triggering the operation.

When P10.00 is set to 1, the operation will proceed circularly after triggering.

P10.03 Selection of number of	Setting	Unit	Factory default		elate node	
operation segments	range 1~16	-	2	P	S	T

Notes:

After triggering the internal position of the operation, it shall operate according to the displacement, velocity and other parameters set by P10.08~P10.77, and the number of operation segments shall be set as required.

(Software version 2.2 and above are compatible with the case of 16 segments)

For example, setting 5 segments:

The set displacement is the user's unit, which is the unit before the electronic gear ratio, and the set velocity unit is rpm (mm/s for linear motor), and the acceleration/deceleration time is the time required for velocity to rise to 1000rpm (mm/s for linear motor).

Fig. 6-13 Schematic Diagram for Operation of Internal Displacement

	Setting	Unit	Factory	R	elate	;d
P10.0E Configuration of	range	Unit	default	1	node	•
Attributes for Segment 1	0~65535	-	0	Р	S	Т

Notes:

Set to 0, indicating that the displacement of the operation of internal position is an absolute position and must be used after homing or used after determining the U00.07 position.

This Indicates that the set displacement is an absolute position relative to the home or initial position.

Set to 1, indicating that the displacement of the operation of internal position is an incremental position, which means that the operation starts with the current position as the starting point.

Other bits are reserved so that other movement functions can be added later and no need to be set at this time.

The attributes for other segments should be configured in the same way.

6.3 Speed mode

Speedmode related function

Speed related function code

	P04.00 Speed command input setting	Setting range	Unit	Factory default	Rela mo						
	setting	0~1	-	0	-	S	-				
N	otes:										
0-	Digital setting										
1.	1- Analog input										
	The motor rotation is controlled by given velocity command										

			TD	100P series serv	vo us	er ma	anual
		Setting	Unit	Factory	R	elate	ed
	P04.01 Set velocity number	range	Onit	default	mode		e
		-6000~6000	rpm(*mm/s)	300	-	S	-
N	lotes:						
Ľ	igital set running velocity						
L	inear motor's unit is mm/S						

		Setting range	Unit	Factory default		elate node				
		-6000~6000	rpm(*mm/s)	300		S	Т			
N	Votes: 0000 0000 1 pm(mm/s) 500 15 1									
ve	elocity setting value when using DI jog									
Li	Linear motor's unit is mm/s									

P04.03 Velocity command	Setting range	Unit	Factory default		elate node	
acceleration ramp time	0~10000	ms	10	-	S	Т

Notes:

Rotary motor: The time for commanding acceleration from 0rpm to 1000rpm Linear motor: The time for commanding acceleration from 0mm/s to 1000 mm/s.

P04.04 Velocity command	Setting range	Unit	Factory default		elate node	
deceleration ramp time	0~10000	ms	10	-	S	-

Notes:

Rotary motor: corresponding to the time for commanding deceleration from 1000rpm to 0rpm Linear motor: is the time for commanding deceleration from 1000rpm to 0rpm..

P04.06 Jogging velocity	Setting range	Unit	Factory default		elate node	
acceleration ramp time	0~10000	ms	10	-	S	-

Notes:

Rotary motor: corresponding to the time for commanding deceleration from 1000rpm to 0rpm. Linear motor: is the time for commanding deceleration from 1000rpm to 0rpm.

	P04.07 Velocity	Setting	Unit	Factory	Relat		ed					
	corresponding to analog	range	Unit	default	mode		e					
	quantity 10V	0~10000	rpm(*mm/s)	3000	-	S	-					
N	Votes:											

velocity value corresponding to voltage value when using analog input Linear motor's unit is mm / S

Velocity acceleration and deceleration time:

The servo driver includes position mode and velocity mode, with the velocity acceleration and deceleration as shown in the figure below: the acceleration time is set as T1, and the deceleration time is T2, which corresponds to the time for acceleration to 1000rpm (*mm/s), so the acceleration is t1/1000, and the deceleration is t2/1000.

Figure 6-14 Description on Acceleration and Deceleration Time

Analog input setting:

Р	P05.30 Analog input offset	Setting range	Unit	Factory default		elate node	
		-5000~5000	1 m v	0	I	S	Т

Note:

Modify the velocity (torque) offset corresponding to the analog voltage

P05.31 Analog input filtering	Setting range	Unit	Factory default	Relate		
	0~60000	0.01ms	200	-	S	Т

Notes:

Possible to suppress the "burr" of analog input and improve the "abnormal noise" of operation"

P05.32 Analog input dead	Setting range	Unit	Factory default		elate node	
zone	0~10000	0.01mv	100	-	S	Т

Notes:

When lower than this voltage input, the command is 0

P05 33 Analog input zero	Setting	Unit	Factory	R	elate	ed
P05.33 Analog input zero	range	Onn	default	1	node	e
drift	0~10000	0.01mv	100	-	S	Т
						-

Notes:

It is acceptable to use F09 to set to 1 for automatically adjusting the AI input zero drift

Figure 6-15 Schematic Diagram for Analog Input

Velocity DO output related function code

	P06.30 Zero position locked velocity command threshold	Setting range	Unit	Factory default	Rela						
		0~6000	rpm(*mm/s)	10	Р	S	Т				
_	Notes:										

Set alocked threshold value of zero velocity. When the signal FunIn.15(z_Lock) is effective and the command is less than P06.30, the velocity command is 0

Linear motor's velocity unit is mm/s

P06.31 Motor rotation state	Setting range	Unit	Factory default		elate node	
threshold	0~1000	rpm(*mm/s)	20	Р	S	Т

Notes:

When the actual velocity of the motor is more than the set value, FunOut.17(VRot) is effective; when the velocity is less than the set value, FunOut.17(VRot) is ineffective. Linear motor velocity's unit is mm / S

P06.32 Velocity reach signal	Setting range	Unit	Factory default		elate node	
width	1~200	rpm(*mm/s)	10	Р	S	Т

Notes:

Meet:

When | actual torque command-actual velocity feedback |is <= P06.32, and kept for P06.36 time, the velocity remains at signal FunOut.14(VIn)

Linear motor velocity's Unit is mm/s.

P06.34 Zero velocity output	Setting range	Unit	Factory default		elate node	
signal threshold	1~6000	rpm(*mm/s)	10	Р	S	Т

Notes:

When | motor velocity | <= P06.34 and kept for P06.37, the output of the zero velocity signal FunOut.12(VZero) is effective.

Linear motor velocity's Unit is mm/s.

P06.35 Velocity DO filtering	Setting range	Unit	Factory default		elate node	
time	0~6000	rpm(*mm/s)	10	Р	S	Т

Notes:

Set the filtering of velocity feedback, and use the filtered velocity feedback to judge the velocity reach signal

Linear motor velocity's Unit is mm/s.

	P06 26 Valacity reach signal	Setting	Unit	Factory	R	elate	ed	
	P06.36 Velocity reach signal	range	UIII	default	r	node	e	
	hold time	0~1000	ms	0	Р	S	Т	
Ν	Notes:							

Meet:

When | actual torque command-actual velocity feedback |<= P06.32, and kept for P06.36 time, the velocity remains at signal FunOut.14(VIn)

P06.37 Zero velocity signal	Setting range	Unit	Factory default		elate node	
hold time	0~1000	ms	0	Р	S	Т

Notes:

When | motor velocity | <= P06.34, and keep for P06.37 time, the output of the zero velocity signal FunOut.12(VZero) is effective.

6.4 Torque mode

Τ	orque mode related function c	ode								
	PO4 0A Tongue commond	Setting	Unit	Factory	Related					
	P04.0A Torque command	range	UIII	default	r	node	÷			
	input setting	-	0	-	-	Т				
N	Notes:									
C	ontrol motor rotation by given torq	ue command								
0	-digital setting									
1	-analog input									

$\begin{array}{ c c c c c c c } \hline range & range & range & default & mode \\ \hline range & -4000 \sim 4000 & 0.1\% & 0 & - & T \\ \hline \end{array}$	P04.0B Digital set torque	Setting	Unit	Factory	R	elate	ed
-4000~4000 0.1% 0 T		range	Unit	default	r	node	e
	command	-4000~4000	0.1%	0	-	-	Т

Notes:

Set digital given torque command (rated current percentage)

P04.0C Torque command	Setting	Unit	Factory	R		
corresponding to analog	range	0 mit	default	mode		e
quantity 10V	0~3000	0.1%	0	-	-	Т

Notes:

Set digital given torque command (rated current percentage)

P04.0D Torque command	Setting range	Unit	Factory default		elate node	
acceleration ramp time	0~10000	ms	10	-	-	Т

Notes:

Corresponding to the time for commanding increase from 0% torque to 100% torque

P04.0E Torque command	Setting range	Unit	Factory default		elate node	
deceleration ramp time	0~10000	ms	10	Р	S	Т

Notes:

Corresponding to the time for commanding decrease from 100% to 0%

P04.0F Emergency st	op Setting range	Unit	Factory default		elate node	
torque	0~3000	0.1%	1000	Р	S	Т

Notes:

The value of the emergency stop torque when the emergency stop torque is used for shutdown

	P04.10 Velocity positive limit	Setting	Unit	Factory	Relate		ed
		range	Onn	default	r	2	
		1~6000	rpm(*mm/s)	3000	Р	S	

Notes:

velocity positive limit in velocity position mode enters the velocity mode after reaching the limit value

Linear motor's Unit is mm/s

P04.11 Velocity negative	Setting range	Unit	Factory default		elate node	
limit	1~6000	rpm(*mm/s)	3000	Р	S	

Notes:

velocity reserve limit in velocity position mode enters the velocity mode after reaching the limit value

Linear motor's Unit is mm/s

	P04.12 Torque command positive limit	Setting range	Unit	Factory default	Relate mode		
		1~4000	0.1%	3000	Р	S	Т

Note:

Mode torque command positive limit threshold is available

	P04.13 Torque command negative limit	Setting range	Unit	Factory default		elate node	
		1~4000	0.1%	3000	Р	S	Т

Notes:

Mode torque command negative limit threshold is available

P04.14 Torque mode velocity	Setting range	Unit	Factory default		elate node	
positive limit	1~6000	rpm(*mm/s)	3000	-	-	Т

Notes:

velocity positive limit in torque mode enters the velocity mode after reaching the limit value Linear motor's Unit is mm/s

P04.15 Torque mode velocity	Setting range	Unit	Factory default		elate node	
negative limit	1~6000	rpm(*mm/s)	3000	-	-	Т

Notes:

velocity negative limit in torque mode enters the velocity mode after reaching the limit value Linear motor's Unit is mm/s

Torque D	0 output	related	function	code
----------	----------	---------	----------	------

	each Setting Unit	Factory	R	elate	ed	
P06.3A Torque reach	range	Unit	default	ľ	node	2
reference value	0~3000	0.1%	0	Р	S	Т

Notes:

Set the reference threshold of torque reach output

	P06.3B Torque reach signal's effective threshold	Setting range	Unit	Factory default		elate node	
		0~3000	0.1%	0	Р	S	Т

Notes:

Meet:

When $-P06.3B \le actual$ torque command $-P06.3A \le P06.3B$, the torque reach signal is effectively output

	P06.3C Torque reach signal's	Setting range	Unit	Factory default		elate node			
	ineffective threshold	0~3000	0.1%	0	Р	S	Т		
N	Notes:								
M	leet:								
W	hen actual torque command -P06.3	A>= P06.3C o	r						
A	Actual torque command $-P06.3A \ge -P06.3C$,								
Т	orque reach signal is ineffective								

Torque reach signal FunOut.16

6.5 Mode switch

When P02.00=3, it is acceptable to use DI to switch operating modes as shown in the table below

ModSell (FunIn.11)	ModSel2 (FunIn.12)	Mode
0	0	Position mode
0	1	Torque mode
1	0	Speed mode
1	1	Position mode

When the DI terminal is used for mode switching, only two modes are normally used for switching. The host devicecan only select and control one DI function, and the other DI function can be set as effective or ineffective by default.

Chapter 7 Adjustment

7.1 Gain adjustment target

Gain adjustment is for the purpose to allow the motor to work without delay according to the command from of the upper computer, which can give full play to the mechanical performance. Users often need to adjust the relative gains of position loop and velocity loop.

Here are some common commissioning waveforms

Due to the weak gain adjustment, the servo system has a slow response and a long tail

The gain matching between the position loop and the speed loop is unreasonable, resulting in overshoot.

The gain of position loop or speed loop is too strong, resulting in oscillation. The ideal position response can be achieved by enhancing the gain of position loop and speed loop, as well as feedpositive and other parameters.

In the actual commissioning process, due to the influence of mechanical factors, the position feedback is difficult to completely coincide with the instruction. At this time, it is only necessary to ensure that the response has no overshoot or oscillation and the positioning time is less than the required value.

7.2 Manual gain adjustment

Gain adjustment often follows the following process

7.2.1 Inertia identification

Inertia identification is the first step for parameter adjustment, which can be identified by panel or background. If it is identified by background, it can be identified by wizard. If it is operated by panel, the operation process is as follows:

Schematic diagram for inertia identification

Inertia identification related function code

	F01 Automatic identificationSetting rangeUnitof load inertia ratio	Factory	Relate		ed be		
		range	UIII	default	mode		
		-	-	-	Р	S	Т

Notes:

Auxiliary function manual automatic identification of inertia ratio

	P00.0A Load inertia ratio	Setting	Unit	Factory	Related				
		range	Unit	default	mode		e		
		0~12000	-	1.00	Р	S	Т		
						1			

Notes:

Load inertia ratio = external load inertia / motor load inertia

	P0A.00 Inertia identification operation track	Setting range	Unit	Factory default		elate node				
		0~1	-	0	Р	S	Т			
No	otes:									
0-	0- positive and negative triangle command (limited mechanical stroke, positive and negative									
mo	otor operation)									

1-Jog mode (unlimited mechanical stroke, motor running in one direction)

7.2.2 Rigidity grade adjustment

When setting the initial parameters, you can select the self-adjusting mode, that is, P00.00 is set as a non-0 parameter, which is used to set the gain parameters by groups, and then set P00.01, which is used to gradually strengthen the servo response. The function codes affected by different modes of Pn00.00 are as follows:

Function	Description	Rigid table	Positioning	one-parameter
code	Description	mode	mode	mode
P00.02	Group1speedloop	0	0	0
100.02	gain		, ,	Ŭ
	Group1speedloop			
P00.03	integration time	0	0	0
	constant			
P00.04	Group 1 position loop	0	0	0
100.04	gain	0	0	0
P00.05	Group 1 torque	0	0	0
F00.05	filtering constant	0	0	0
P00.06	Group 2 speed loop	X	0	X
F00.00	gain	\wedge	0	\land
	Group 2 speed loop			
P00.07	integration time	\times	0	\times
	constant			
P00.08	Group 2 position loop	X	0	×
100.08	gain	\wedge	0	\land
P00.09	Group 2 torque	X	0	×
100.09	filtering constant	\wedge	0	\land
P00.10	speed feed-positive	X	0	0
F 00.10	gain	\sim	0	0
P00.12	PDFF control factor	X	\times	0
P00.19	Gain switching mode	X	0	X

Gain setting related function code

P00.00 Self adjusting mode	Setting range	Unit	Factory default	Relate mode					
selection	0~3	-	0	Р	S	Т			
Notes:									
0-manual gain setting									
1-rigid table mode									
2-positioning mode									
3-single parameter mode									
According to the load and operation	mode, different adjust	ment me	thods are sele	ected	to g	ive			
full play to the best responsiveness and stability of the system.									

Т

	P00.01 Rigidity grade selection	Setting	Unit	Factory	R	ed	
		range	Onn	default	mode		3
		1~31	-	0	Р	S	Т

Note:

The higher the rigidity is, the better the responsiveness of the system is. However, the higher the rigidity is, the system will vibrate, which should be set according to the actual situation

P00.02 Group 1 speed loop	Setting range	Unit	Factory default		elate node	
gain	1~20000	0.1HZ	250	Р	S	Т

Notes:

The larger the velocity loop proportional gain setting is, the faster the velocity loop response is, which, however, is easy to cause system oscillation if it is too large

	P00.03 Group 1 speed loop integration time constant	Setting range	Unit	Factory default	Related mode		
		15~51200	0.01ms	3183	Р	S	Т

Notes:

The larger the velocity loop integration time constant proportional gain setting is, the smaller the velocity loop integration effect is..

	P00.04 Group 1 position	Setting	Unit	Factory	R	ed	
		range	Om	default	mode		e
	loop gain	0~20000	0.1HZ	400	Р	S	Т
	•		•				

Notes:

Position loop proportional gain

	P00.05 Group 1 torque	Setting range	Unit	Factory default		elate node				
filt	filtering constants	0~3000	0.01ms	79	Р	S	Т			
	Notes: velocity loop low pass filtering time									

Factory Related Setting range Unit P00.06 Group 2 speed loop default mode gain 0.1HZ 250 Ρ S $1 \sim 20000$

Notes:

The larger the velocity loop proportional gain setting is, the faster the velocity loop response is, which, however, is easy to cause system oscillation if it is too large

ROO 07 Group 2 speed loop	Setting range	Unit	Factory	R	elate	ed
P00.07 Group 2 speed loop		Onit	default	1	node	3
integration time constants	15~51200	0.01ms	3183	Р	S	Т

Notes:

The larger the velocity loop integration time constant proportional gain setting is, the smaller the velocity loop integration effect is.

P00.08 Group 2 position	Setting range	Unit	Factory default	Relate mode		
loop gain	0~20000	0.1HZ	400	Р	S	Т

Notes:

Position loop proportional gain

P00.09 Group 2 torque	Setting range	Unit	Factory default	Relate mode		
filtering constant	0~3000	0.01ms	79	Р	S	Т
Notes:						

velocity loop low pass filter time

P00.10 Speed feedforward	Setting range	Unit	Factory default	Relate mode		
gain	0~1000	0.01%	0	Р	S	-

Notes:

Used to set the position lead compensation

	P00.12 PDFF control factor	Setting range	Unit			elate node				
		0~1000	0.01%	1000	Р	S	Т			
Notes: Suppression velocity loop overshoot factor										
	P00.19 Gain switching mode	Setting range	Unit	Factory default		elate node				
	P00.19 Gain switching mode	e	Unit 0-	5						
	P00.19 Gain switching mode tes:	range		default	r	node	2			
No		range 0~4	0-	default 0	r P	node S	2			

When setting different rigidity grade P00.0, the loop gain corresponding to different grades is shown in the table below:

graues is	snown 1							
			p 1 gain				ip 2 gain	1
	P00.02	P00.03	P00.04	P00.05	P00.06	P00.07	P00.08	P00.09
			First	First			Second	Second
Rigidity	First			torque	Second	Second	speedloop	torque
grade	position	speed	integration	filtering	-	-	integration	filtering
	loop gain	loop gain	time	time	loop gain	loop gain	time	time
	(0.1/s)	(0.1HZ)	constant	constant	(0.1/s)	(0.1HZ)	constant	constant
			$(0.1 \mathrm{ms})$	(0.01 ms)			(0.1 ms)	(0.01 ms)
0	20	15	3700	1500	25	15	51200	1500
1	25	20	2800	1100	30	20	51200	1100
2	30	25	2200	900	40	25	51200	900
3	40	30	1900	800	45	30	51200	800
4	45	35	1600	600	55	35	51200	600
5	55	45	1200	500	70	45	51200	500
6	75	60	900	400	95	60	51200	400
7	95	75	700	300	120	75	51200	300
8	115	90	600	300	140	90	51200	300
9	140	110	500	200	175	110	51200	200
10	175	140	400	200	220	140	51200	200
11	320	180	310	126	380	180	51200	126
12	390	220	250	103	460	220	51200	103
13	480	270	210	84	570	270	51200	84
14	630	350	160	65	730	350	51200	65
15	720	400	140	57	840	400	51200	57
16	900	500	120	45	1050	500	51200	45
17	1080	600	110	38	1260	600	51200	38
18	1350	750	90	30	1570	750	51200	30
19	1620	900	80	25	1880	900	51200	25
20	2060	1150	70	20	2410	1150	51200	20
21	2510	1400	60	16	2930	1400	51200	16
22	3050	1700	50	13	3560	1700	51200	13
23	3770	2100	40	11	4400	2100	51200	11
24	4490	2500	40	9	5240	2500	51200	9
25	5000	2800	35	8	5900	2800	51200	8
26	5600	3100	30	7	6500	3100	51200	7
	6100	3400	30	7	7100	3400	51200	7
		3700	25	6	7700	3700	51200	6
29	7200	4000	25	6	8400	400	51200	6
	8100	4500	20	5	9400	4500	51200	5
		5000	20	5	10500	5000	51200	5

The factory rigidity level is generally 12 by default

7.2.3 Vibration suppression setting

7.2.3.1 Set resonant frequency manually.

Under the condition that the servo parameters continuously strengthen the gain, the connection rigidity of the mechanical system may be insufficient, so mechanical resonance may occur, and the vibration frequency may be different, some are high-frequency vibration, some are low-frequency vibration, so it is necessary to set a notch filter at the resonance frequency to suppress the mechanical resonance of the system. The amplitude characteristics of the system at high frequency resonance are as follows:

Servo provides 4 sets of trap parameters for resonance point suppression. Each set of trap can be set with resonance point, anti-resonance point, trap width, trap depth and the corresponding meaning of the parameters as shown in the above figure. When obtaining mechanical resonance point, there are usually two methods. One is to observe its vibration period through the background torque command waveform, and then obtain it through $f_0 = 1/T$ calculation, or obtain the mechanical resonance frequency through the background frequency sweeping function. Each trap set function code is as follows:

P01.04 Group 1 notch filter	Setting range	Unit	Factory default	Relat mod		
anti-resonance frequency	10~5000	ΗZ	5000	Р	S	Т

Notes:

Corresponding system anti-resonance point

P01.05 Group 1 notch frequency	Setting range	Unit	Factory default	Related mode		
	50~5000	HZ	5000	Р	S	Т

Notes:

Corresponding system resonance point

P01.06 Group 1 notch filter Band	Setting range	Unit	Factory default	5		
width	0~9	-	2	Р	S	Т

Notes:

Determine the frequency range for system suppression

P01.07 Group 1 notch filter	Setting range	Unit	Factory default		Related mode	
attenuation level	0~99	-	0	Р	S	Т

Notes:

Determine the suppression depth to the resonance point of the system

P01.08 Group 2 notch filter	Setting range	Unit	Factory default	Relate		
anti-resonance frequency	10~5000	ΗZ	5000	Р	S	Т

Note:

Corresponding system anti resonance point

D 01.0	P01.09 Group 2 notch filter frequency	Setting	Unit	Factory	Related				
		range	Unit	default	mode		e		
frequ		50~5000	ΗZ	5000	Р	S	Т		
					1	1	1		

Notes:

Corresponding system resonance point

	P01.0A Group 2 notch filter band width	Setting	Unit	Factory	R	ed	
		range	UIII	default	mode		e
		0~9	-	2	Р	S	Т

Notes:

Determine the frequency range of system suppression

	P01.0B Group 2 notch filter attenuation level	Setting range	Unit	Factory default	Related mode		
		0~99	-	0	Р	S	Т

Notes:

Determine that depth of suppression to the resonance point of the system

P01.0C Group 3 notch filter anti-resonance frequency	Setting range	Unit Factory default		Related mode		
	10~5000	ΗZ	5000	Р	S	Т
Notes:				•	•	

Notes:

Corresponding system anti resonance point

P01.0D Group 3 notch filter	Setting range	Unit	Factory default	Relate mode		
frequency	50~5000	HZ	5000	Р	S	Т
Note: Corresponding system resonance point						

P01.0E Group notch filter band width	Setting range	Unit	Factory default		Related mode	
	0~9	-	2	Р	S	Т

Note:

Determine the frequency range of system suppression

attenuation level $0 \sim 99$ -0PST		P01.0F Group 3 notch filter attenuation level	Setting range	Unit	Factory default	Related mode		
			0	-	0	Р	S	Т

Note:

Determine that depth of suppression to the resonance point of the system

P01.10 Group 4 notch filter	Setting range	Unit	Factory default	Relate mode		
anti-resonance frequency	10~5000	ΗZ	5000	Р	S	Т

Notes:

Corresponding system anti resonance point

	P01.11 Group 4 notch filter frequency	Setting range	Unit Factory default		Related mode		
		50~5000	HZ	5000	Р	S	Т
]	Notes:						

Corresponding system resonance point

P01.12 Group 4 notch filter band width	Setting range	Unit	Factory default	Related mode		
	0~9	-	2	Р	S	Т

Notes:

Determine the frequency range for system suppression

P01.13 Group 4 notch filter	Setting range	Unit	Factory default	Related mode					
attenuation level	0~99	-	0	Р	S	Т			
Notes: Determine that depth of suppression to the resonance point of the system									

In the meaning of the above function codes, the width is defined as shown in the following table

Width setting	Actual suppression width of notch filter
0	$0.5 * f_0$
1	$0.6 * f_0$
2	$0.7 * f_0$
3	$0.8 * f_0$
4	f_0
5	$1.2 * f_0$
6	1.4 * f_0
7	$1.6 * f_0$
8	$1.8 * f_0$
9	$2 * f_0$

Depth definition represents the ratio of input and output of resonance frequency points. The smaller the value, the greater the suppression depth. The larger the value, the shallower the suppression depth, and the output amplitude/input amplitude = depth level/100.

The smaller the depth value is set, the deeper the notch depth is.

7.2.3.2 Automatically set resonance frequency

If you don't want to set the function code manually to suppress resonance, you can turn on the adaptive filter to suppress resonance frequency. This function can automatically set the parameters of the third group and the fourth group of notch filters. When no resonance point is found after turning on, it will automatically exit 30 minutes later. If the resonance point is found and the notch filter is set, the vibration will become more intense, and it will also self The adaptive function is exited and the parameters of the notch filter are reset.

The adaptive related function codes are as follows:

	P01.00 Adaptive filter mode		Unit	Factory	Related			
-	filter mode	range	range		mode			
selection	2110 n	0~4	-	0	Р	S	Т	
Notes:								
0- does not turn on th	e adaptive filte	r						
1- Group 3 notch filte	r parameters au	utomatically upo	lated					
2- Automatic update of notch filter parameters for groups 3 and 4								
3- Test resonance frequency only, shown in P01.02								
- Clear the values of trap filters in groups 3 and 4								

D 01		ion Setting Unit	Factory	R	elate	ed .	
	P01.01 Vibration	range	Unit	default	1	node	•
det	ermination threshold	0~1000	0.1%	20	Р	S	Т

Note:

100% corresponds to the threshold value of motor rated torque to judge system oscillation

	P01.02 Resonance frequency identification results	Setting range	Unit	Factory default		elate node	
		0~5000	HZ	-	Р	S	Т

Notes:

Displays the tested resonant frequency value

7.2.3.3 Low frequency jitter suppression

In some flexible loads such as mechanical hands, when the motor running tracking command reaches a given position, the load will overshoot due to the non-rigid connection of the load, thus driving the motor to overshoot, resulting in low-frequency jitter, as shown in the following figure:

At this time, the jitter can be suppressed by setting the low-frequency vibration frequency. The filter directly acts on the position command, as follows:

Description Setting filter related function codes are as follows: Factory default Related mode P01.0F Low frequency vibration suppression mode Setting on the set of the low frequency suppression filter manually Image of the set of the low frequency suppression filter manually Image of the set of the low frequency suppression filter manually

1-set the low frequency suppression filter automatically

P01.20 Low frequency vibration determination	Setting range	Unit	Factory default	Relat		
threshold	0~65535	-	10	Р	-	-

Notes:

When the position deviation is greater than the set value, it is considered that low frequency vibration occurs

P01.21 Low frequency	Setting range	Unit			elated mode	
vibration frequency	10~1000	0.1HZ	1000	Р	-	-

Notes:

Measured low-frequency vibration frequency

P01.22 Low-frequency	Setting range	Unit	Factory default		elate node	
vibration filter setting	0~10	-	2	Р	-	-

Notes:

The larger the value, the larger the filter width, but the greater the delay

P01.23 Low-frequency resonance frequency	Setting range	Unit	Factory default	Related mode		
attenuation ratio	12~30	0.1	12	Р	-	-

Note:

The larger the value is, the greater the filtering depth is, and the smaller the position command delay is

7.2.3.4 Full closed loop vibration suppression

In the full closed-loop system, the servo system controls the velocity through the motor encoder and the position through the encoder on the load. Due to the torque between the motor and the load, the velocity fed back by the two encoders is not synchronous, which shows that there is shaking at the load end. In order to suppress the vibration caused by the asynchronous, the following parameter settings can be used to suppress it.

	Setting Unit	Factory	R	elate	;d	
P08.04 Hybrid vibration	range	Onit	default	mode		;
suppression gain	-3000~3000	0.1HZ	0	Р	I	-

Note:

Used to adjust the vibration suppression rate and has obvious effect when the torque of motor and load is large

	P08.05 Cut-off frequency of	Setting	Unit	Factory	Relate		ed			
	hybrid vibration suppression	range		default			e			
	filter	10~5000	1HZ	500	Р	-	-			
No	Note:									

Vibration suppression filter setting

	P08.06 Full closed loop velocity correction coefficient	Setting range	Unit	Factory default	~					
		0~1000	0.1%	500	Р	I	-			
No	Notes:									

Put the velocity feedback compensation of the encoder at the load end into the actual velocity control loop

P08.07 Filter coefficient of	Setting	Unit	Factory	Related		ed
internal and external ring	range		default	mode		2
position deviation	0~1000	0.1ms	0	Р	I	_

Notes:

Filter the position feedback of load end and motor end

7.2.4 Practical application gain adjustment 7.2.4.1 Feedpositive function

In the position control, the velocity command generated in the next cycle can be estimated by the position command, which can be directly compensated to the velocity control loop, avoiding the role of the position regulator, and effectively reducing the position deviation in the position control.

Similarly, in the velocity control, the torque command generated in the next cycle can be directly compensated to the current control loop through the velocity command estimation, which can effectively improve the velocity control response.
The control loop is as follows:

The function codes used for commissioning are as follows:

	P00.0F Velocity control	Setting range	Unit	Factory default		elate node	
	feedpositive selection	0~2	-	1	Р	S	-
No	otes:						
0~	no velocity feed positive						
1~	internal velocity feedpositive						
2~	external velocity feedpositive						

P00.10 Velocity feedpositive	Setting range	Unit	Factory default	Relat mod		
gain	0~1000	0.1%	0	Р	-	-

Notes:

Only the position mode is effective, the larger the velocity feedpositive is, the better the follow command is, the smaller the position deviation is, but the larger the feedpositive is, the system overshoot is easily caused, which should be set according to the actual situation

P00.11 Velocity feedpositive	Setting range	Unit	Factory default		elate node	
filter time parameter	0~6400	0.01ms	50	Р	-	-

Notes:

Low pass filter is used for velocity feedpositive to avoid too drastic change of velocity feedpositive

P00.14 Torque feedpositive	Setting range	Unit	Factory default		elate node	
gain	0~1000	0.1%	0	Р	S	-

Notes:

The larger the torque feedpositive is, the better the follow-up velocity command is, but the larger the feedpositive is, the system will be overshoot, the stability will be poor, and the abnormal noise will be set according to the actual situation

	Setting	Unit	Factory	R	ed	
P00.15 Torque feedpositive filtering time parameter	Tange	Unit	default	ľ	e	
filtering time param	eter 0~6400	0.01ms	0	Р	S	-

Notes:

The low-pass filter is applied to the torque feedpositive to avoid the drastic change of velocity feedpositive

7.2.4.2 Gain switching

When the servo is running and stopping, it is often necessary for the servo to have different response characteristics, namely:

Low gain is required to stop to avoid zero position vibration

High gain is required at stop to improve servo locking capability

High gain is needed in operation to improve servo tracking capability

In order to meet the requirements of operation and stop at the same time, the gain switching function needs to be introduced, as shown in the following figure:

The gain switching function mainly switches between the first group of gain and the second group of gain. In addition to the gain,

The function codes used are shown in the table below:

	P00.19 Gain switching mode	Setting range	Unit	Factory default		elate node				
	selection	0~4	-	0	Р	-	-			
Νc	otes:									
0 -	0 ~ fixed as the first group gain									
1 -	- maintain the first group of gain,	and the di swite	ching integral ti	me is 0						
2 -	- use DI to switch the first and sec	ond group gains	5							
3 -	3 ~ use position command + velocity feedback to switch									
4 ~	- ~ use position command + velocity feedback to switch to lock the gain									

	Setting	Unit	Factory	Relate		ed
P00.1A Gain switching delay	range		default	mode		2
time	0~10000	0.1ms	50	Р	-	-

Notes:

Used to set the delay time for switching from the second gain to the first gain

	P00.1B Gain switching level	Setting range	Unit	Factory default		elate node	
		0~20000	0.1ms	50	Р	-	-

Notes:

If the switching condition is position, then the unit is p; if the switching condition is velocity, then the unit is RPM (* mm/s); if the switching condition is torque, then the unit is 0.1%

	P00.1C Gain switching delay	Setting range	Unit	Factory default	Relate mode		
		0~20000	0.1ms	50	Р	-	-

Notes:

If the switching condition is position, then the unit is p; if the switching condition is velocity, then the unit is RPM (* mm/s); if the switching condition is torque, then the unit is 0.1%

P00.1D Gain switching time	Setting range	Unit	Factory default		elate node	
	0~10000	0.1%	30	Р	-	-

Notes:

Used to set the time for switching from the first gain to the second gain

P00.0E Group 3 gain	Setting range	Unit	Factory default		elate node	
coefficient	50~10000	1 %	30	Р	-	-

Notes:

Used to set the amplification factor of the third group of gain and the first group of gain when stopping, and only amplify the position proportional gain and the velocity proportional gain

P00.0F Group 3 gain hold times	Setting range	Unit	Factory default	r	elate node	
	0~10000		0	Р	-	-
Notes: Used to set the group 3 gain holding	time when stop	ping				

When the gain switching mode is selected as 3, the switching process is as follows:

velocity<P01B

When the switching mode is selected as 4, a new group gain is introduced on the basis of 3. The group 3 gain amplification coefficient P00.0E is only for the position proportional gain and velocity proportional gain of the group 1 gain, and the velocity integration time and torque filtering coefficient remain the same as group 1, with the switching process as follows:

7.2.4.3 Command filtering function

In the position control, if the host devicesends commands with a fast frequency, which exceeds the overload capacity of the servo motor; or if the upper computer's commands have a large jump, resulting in obvious starting impact sound of the servo motor, the position commands need to be filtered to make the servo start smooth, reduce the impact on the load, and reduce the servo load rate.

For the smooth filtering of the position command, when the filtering time is set, the position command changes as follows:

For the low-pass filtering of the position command, when the filtering time is set, the command will obviously decrease when accelerating to the highest velocity and decelerating to the lowest velocity, as shown below:

For model position command filtering, the filtering effect of position command can be increased or decreased by adjusting the model gain after the model loop is opened. Its effect on position command is similar to that of low-pass filtering. The smaller the model gain, the stronger the filtering effect, while the larger the model gain, the weaker the filtering effect.

	P00.25 Model loop enable	Setting range	Unit	Factory default		elate node	
		0~1	-	0	Р	-	-
No	tes:						
0 ~	- disable model loop						
1 ~	enable model loop						

	P00.26 Model loop gain	Setting	Unit	Factory	R	elate	ed
		range	Unit	default	mode		
		1~20000	0.1HZ	400	Р	-	-

Notes:

The larger the gain, the higher the model loop response and the smaller the position instruction delay

7.2.4.4 Disturbance suppression of external forces

(1) Disturbance observer

When the servo motor is running, if the load is suddenly affected by external force, the velocity fluctuation of the servo motor may occur, resulting in mechanical noise or vibration. In order to suppress the impact of this load fluctuation and reduce the velocity fluctuation, the observer can be interfered. The adjustment function code is as follows:

	P00.26 Model loop gain	Setting range	Unit	Factory default	Relate		
		1~20000	0.1HZ	400	Р	-	-

Notes:

The larger the gain, the higher the model loop response and the smaller the position command delay

P01.1A Disturbance torque	Setting range	Unit	Factory default		Related mode	
compensation gain	0~1000	0.1%	0	Р	S	-

Notes:

The larger the setting value is, the stronger the disturbance suppression effect will be, but high frequency noise may occur if it is too large. In this case, commissioning shall be carried out in coordination with the filtering time

P01.1B Disturbance torque	Setting range	Unit	Factory default		elate node	
filtering time	0~2500	0.01ms	50	Р	S	-

Notes:

When reducing the noise produced by disturbance suppression, the larger the time is, the stronger the filtering effect will be, but it will slow down the suppression velocity

(2) Instantaneous velocity observation and velocity filtering

When the resolution of the motor encoder is low, if the loop gain is increased, strong noise may occur, even mechanical vibration may occur when the zero position is fixed. In order to suppress this noise, it is necessary to deal with the velocity feedback to reduce the velocity fluctuation.

P00.20 Average filtering time	Setting range	Unit	Factory default		elate node	
of velocity feedback	0~5	-	0	Р	S	Т
Notes:						
0 ~ no smooth filtering						
1 ~ 2 times smooth filtering						
2~-4 times smooth filtering						
3~8 times smooth filtering						
4 ~ 16 times smooth filtering						
5 ~ 32 times smooth filtering						

P00.21 Cut-off frequency of velocity feedback low-pass	Setting range	Unit	Factory default		Relate mode	
filter	50~5000	HZ	5000	Р	S	Т

Note:

When it is set to 5000, there is no filtering effect. The smaller the setting value is, the stronger the filtering effect is

	P00.22 Cut-off frequency of torque observation	Setting range	Unit	Factory default	Related mode		
		1~5000	HZ	400	Р	S	-

Note:

Used to filter the observed torque value. The larger the value, the smaller the delay

P00.23 Torque observation	Setting range	Unit	Factory default		elate node	
proportional gain	1~8000	HZ	400	Р	S	-

Note:

As for the observed proportional gain, the larger the value is, the smaller the delay is

P00.24 Velocity observation position compensation gain	Setting range	Unit	Factory default	Related mode						
	0~3000	HZ	400	Р	S	-				
Notes:										
Used to compensate the velocity deviation caused by the position observation deviation										

(2) Friction compensation

Friction compensation is used to solve the problem of starting delay caused by friction. After friction compensation is added, the servo motor can be started quickly

and the starting position deviation can be reduced. The compensation method is as follows:

Relevant function codes are set as follows:

	P01.1C Constant torque compensation value -1	Setting	Unit	Factory	Relat		ted	
		range		default	mode		le	
		-1000~1000	0.1%	0	P	S	-	

Notes:

Compensation for external constant load forces such as gravity

P01.1D positive friction	Setting range	Unit	Factory default		Related mode	
compensation	-1000~1000	0.1%	0	Р	S	-
Note: positive rotation compensation value						

P01.1E Negative friction	Setting range	Unit	Factory default		elat mod	
compensation	-1000~1000	0.1%	0	Р	S	-
Note: negative rotation compensation value						

Chapter 8 Communication Mechanism

This servo driver is compatible with the serial communication function of RS-485 and RS-232. The parameters in the servo system can be accessed and changed by using the communication function. RS-485 and RS-232 communication functions can be used at the same time.

RS485 interface is located in CN1, for its wiring, see Chapter 3.2.5;

RS232 is CN2. For its wiring, see Chapter 3.3. You can use the commercially available USB mini-B to connect the PC.

Mobus related function settings :

	Setting	Unit	Factory	Relat	ed
P09.00 Station number	range	UIII	default	mod	e
selection	0~127	1	0	P S	Т

Notes:

When RS-232 / RS-485 communication is used, only one station number can be set for a group of servo drivers.

If the station number is set repeatedly, normal communication will not be possible

P09.01 Modbus communication baud rate	Setting range	Unit	Factory default	Rela mo	
communication setting	0~6	-	6	P S	Т
Notes:					
0-2400 Kbp/s					
1-4800 Kbp/s					
2-9600 Kbp/s					
3-19200 Kbp/s					
4-38400 Kbp/s					
5-57600 Kbp/s					
6-115200 Kbp/s					

P09.02 Modbus	Setting	Unit	Factory	Rela	ted
	range	0 mit	default	moo	le
communication data format	0~3	-	0	P S	Т
Notes:					
To be compatible with the communic	ation format of	the upper comp	uter		
0-no check, 2 stop bits					
1-even check, 1 stop bit					
2-odd check, 1 stop bit					
3-no check, 1 stop bit					

P09.0a Background software 232 baud rate communication	Setting range	Unit	Factory default	Related mode
setting	0~6	-	6	P S T
Notes:				
0-2400 Kbp/s				
1-4800 Kbp/s				
2-9600 Kbp/s				
3-19200 Kbp/s				
4-38400 Kbp/s				
5-57600 Kbp/s				
6-115200 Kbp/s				

P09.10485 EEROPM save prohibited during	Setting range	Unit	Factory default	Relat mod	
communication	0~1	-	0	P S	Т

Notes:

0~ enables EEPROM save

1~ disable EERPOM save

Since EERPOM save is limited in number of times, it is better to set this parameter to 1 when frequently reading and writing parameters (function codes) in communication.

If you do not read and write frequently, you do not need to change. The setting of this parameter does not affect the setting of the panel.

8.1 Mod bus communication protocol

RTU (Remote Terminal Unit) mode generally begins with one static signal and ends with another static signal, and between which, there are communication positions, function codes, data contents, CRC (Cyclical RedundancyCheck), etc.

RTU mode: :

start	Static time over 10ms	
Slave Address	Communication address : 1-byte	
Function	Function code : 1-byte	
Data (0)	Data content : n-word =2n-byte , n<=10	
Data (n-1)		
CRC	Error check : 1-byte	
End	Static time over 10ms	

8.2 RTU function command

Function : 0x03 read function code

For example, the station number is 1 and the read function code is P04.10 Information sent from the master station:

Start	Static time over 10ms		
Slave Address	Station number : 0x01		
Function	Function : 0x03		
Data (0)	Beginning address group number : 0x04		
Data (1)	Beginning address offset: 0x10		
Data (2) (word)	The high bit of the number of read function codes: 0x00		
Data (3) (word)	The lower bit of the number of read function codes: 0x01		
CRC Check Low	0x84		
CRC Check High	Check High 0xFF		
End	Static time over 10ms		

Information returning from the master station :

intormation retaining	
Start	Static time over 10ms
Slave Address	Station number : 0x01
Function	function : 0x03
Number of data(byte)	Data : 0x02
Data (0)	The high byte of beginning data: 0x17
Data (1)	The low byte of beginning data: 0x17
CRC Check Low	0xB6
CRC Check High	0x50
End	Static time over 10ms

That is, the transmit frame is: 01 03 04 10 00 01 84 FF The response is: 01 03 02 17 70 B6 50

Function : 0x06 write function code

For example, if the station number is 1 and the value of writing a 16 bit function code p02.19 is 300, this function cannot write a 32-bit function code.

Start	Static time over 10ms
Slave Address	Station number:0x01
Function	Function:0x06
Data (0)	Address group number::0x02
Data (1)	Address offset:0x19
Data (2)	The high bit of the value of write function code:0x01
Data (3)	The low bit of the value of write function code:0x2C
CRC Check Low	0x59
CRC Check High	0xF8
End	Static time over 10ms

Information sent from the master station:

Start	Static time over 10ms	
Slave Address	Station number:0x01	
Function	Function:0x06	
Data (0)	Address group number::0x02	
Data (1)	Address offset:0x19	
Data (2)	The high bit of the value of written function code:0x01	
Data (3)	The low bit of the value of written function code:0x2C	
CRC Check Low	heck Low 0x59	
CRC Check High	0xF8	
End	Static time over 10ms	

That is, the transmit frame is:01 06 02 19 01 2C 59 F8 The response is:01 06 02 19 01 2C 59 F8

Function : 0x10 Write 32-bit function code

For example, if the station number is 1 and the value of 32-bit function code p03.12 is 1048576, this function cannot write 16 bit function code

Start	Static time over 10ms
Slave Address	Station number:0x01
Function	Function:0x10
Data (0)	Address group number::0x03
Data (1)	Address offset:0x12
Data (2)	The high bit of the number (word) of write function cod:0x00
Data (3)	The low bit of the number (word) of write function code:0x02
Data (4)	The lower bit of the number of write bytes (word):0x04
Data (5)	The values of function codes bit8~bit15, 0x00
Data (6)	The values of function codes bit0~bit7 0x00
Data (7)	The values of function codes bit24~bit31 0x00
Data (8)	The values of function codes bit16~bit23 0x10
CRC Check Low	0x66
CRC Check High	0x46
End	Static time over 10ms

Information returning from the slave station:

Start	Static time over 10ms
Slave Address	Station number:0x01
Function	Function:0x10
Data (0)	Address group number::0x03
Data (1)	Address offset:0x12
Data (2)	High bit of the number of written function code:0x00
Data (3)	Low bit of the number of written function code:0x02
CRC Check Low	0 x E 1
CRC Check High	0x89
End	Static time over 10ms

That is, the transmit frame is:01 10 03 12 00 02 0400 00 00 10 66 46 The response is:01 10 03 12 00 02 E1 89

8.3Mod bus function code communication address

1. Set the function code to Pxx.YY and the corresponding modbus address to xx.yy, with, for example, P05.10 0x05 as the group number and 0x10 as the offset, which are both in hexadecimal format.

2. The corresponding communication address of observation group function code (this group is read-only) is:

U00.YY: The corresponding mod bus address: Group number is 0x20, address offset is 0xYY. For example, read the current temperatureU00.1Dof the driver, with the address as 0x20 and offset as 0x1D.

U01.YY: Corresponding modbus address: The group number is 0x21 and the address offset is 0xYY. For example, when reading the selected fault, the rotating velocity is U01.05, with the address as 0x21 and the offset as 0x05.

U02.YY: Corresponding modbus address: the group number is 0x22, with address offset of 0xYY. For example, in caser of software versionU02.00, the address is 0x22, and the offset is 0x00.

3. The corresponding communication address of the auxiliary function code group is:

FYY.: Corresponding modbus address: The group number is 0x25, with address offset as 0xYY.

Chapter 9 Alarm Treatment

List of alarm messages

Alarm code	Alarm name	Alarm type	Mechanism and Treatment measures
AL.00.0	FPGA parallel port error	Non-resettable error	Power on again. If the alarm still occurs, please replace it with a new one
AL.00.1	Abnormal system parameters	Non-resettable error	Check the address of abnormal parameter function code of U00.3e and U00.3f, and if it indicates that this function range exceeds the limit value, please contact our personnel for changes.
AL.00.2	Abnormal function code parameter	Non-resettable error	Use F04 to reset the function code
AL.00.3	Abnormal manufacturer's parameters	Non-resettable error	Use F04 to reset the function code
AL.00.7	Incompatible software versions	Non-resettable error	Please contact our personnel
AL.01.0	Overvoltage	Resettable error	Ensure that the 220v input is within the range of (200V~240v) and an alarm is given for overvoltage during operation. Set the release function and add an external release resistor to release excess energy or increase the acceleration and deceleration time.
AL.01.1	Under-voltage	Resettable error	Check whether the external power supply input is too low to ensure that the 220v input is within the range of 200V~240V
AL.01.3	Loss of phase in power supply	Resettable error	Test whether there is a loss of phase in the external power input, or it is acceptable to use P07.05=2 to shield this fault.
AL.01.5	Phase sequence error	Resettable error	UVW wiring error, need to change over the wiring of any two phases
AL.02.0	Over-current occurring in phase p of the bus.	Non-resettable error	Test the UVW wiring for a short and the resistor between the UVW phases for the correct resistance value
AL.02.1	Over-current occurring in phase	Non-resettable error	The resistance value of the brake resistor is too small or there is ashort

			TD100P series servo user manual			
	n of the bus.		circuit			
AL.02.2	Overcurrent fault	Non-resettable	There is an error of short-circuit to			
111.02.2	in phase U	error	ground or UVW is short circuited to			
			PE Demonstrating annual loading to			
AL.02.3	Overcurrent fault	Non-resettable	Parameter setting error leading to excessive gain, it is necessary to			
11210210	in phase A	error	properly reduce the rigidity and gain			
AL.02.4	Short circuit to	Non-resettable	Ensure that the insulation between U,			
	ground	error	V, W and preaches the level of M Ω			
	Release	Non-resettable	The brake resistor is short circuited;			
AL.02.5	overcurrent	error	check the resistance value of the			
			brake resistor			
			Excessive velocity fluctuation and			
AL.02.6	Abnormal PWM	Non-resettable	gain If the current loop gain is too large			
AL.02.0	signal	error	If the current loop gain is too large, reduce the motor current loop gains			
			P18.14 and P18.15.			
	Excessive drive	Resettable	Increase space heat dissipation and			
AL.02.7	temperature	error	reduce average load rate			
			Reduce the average load rate,			
		Resettable	increase the acceleration and			
AL.02.8	Driver overload	error	deceleration time, and detect whether			
			there is mechanical jamming.			
			Reduce the average load rate,			
			increase the acceleration and			
			deceleration time, detect whether			
		Resettable	there is mechanical jamming, and			
AL.02.9	Motor overload	error	appropriately increase and adjust			
			P07.11.			
			It is also acceptable to adjust P07.01			
			to 1 so as to turn off the overload			
			error of the motor.			
			Test if there is mechanical jamming			
AL.02.A		Resettable	Test if there is wrong UVW wiring			
	Motor stalling	error	If case of an electrical angle error,			
			use Fn03 to re-identify the electrical angle.			
	Excessive Ptc	Resettable				
AL.02.B	motor temperature	error	Reduce motor load rate			
	motor temperature	01101				

	1	1	TD100P series servo user manual
AL.02.D	Release resistor overload	Resettable error	After releasing the resistor overload, it can't continue to release. It is necessary to increase the power of the braking resistor and set correct parameters to P02.20~ P02.24, or increase the heat dissipation coefficient of the releasing resistor of P02.38
AL.03.0	MCU lost	Non-resettable error	Please contact our personnel
AL.03.1	FPGA interrupt timeout	Non-resettable error	Please contact our personnel
AL.03.2	Current sampling timeout	Non-resettable error	Please contact our personnel
AL.03.3	Encoder timeout	Non-resettable error	Check the cable of encoder
AL.03.4	FPGA operation timeout	Non-resettable error	Please contact our personnel
AL.04.0	No corresponding drive	Non-resettable error	P19.00 setting error, no corresponding driver model, Please contact our personnel for change
AL.04.1	No corresponding motor	Non-resettable error	P18.00 setting error, no corresponding driver model, Please contact our personnel for change
AL.04.4	DI error	Resettable error	In case of DI function allocation failure, allocated the same DI function should to different DI; in case of frequency division errors, modify the function code settings and make changes
AL.04.5	Electronic gear ratio setting error	Resettable error	Modify the ratio of electronic gear (P03.12~P03.18) to make it within the correct Setting range.
AL.04.6	Frequency division output setting failure	Resettable error	The number of frequency division output pulses is greater than the frequency division rate of encoder, so it is necessary to reset P02.03
AL.04.8	Soft limit setting failure	Resettable error	Upper limit of software position limit (P03.23) is less than lower limit (P03.21)
AL.04.9	Home position setting error	Resettable error	The mechanical home offset P03.36 is set outside the soft limit, the upper limit of the software position limit is (P03.23), the lower limit is (p03.21),

	TD100P series servo user manua				
			P03.36 needs to be reset		
AL.04.A	The resistance of external release resistor is too small	Warning	Change a suitable release resistor and set it to the correct value (P02.22)		
AL.05.0	Positive overshoot	Warning	External (or software limit) positive over-travel signal is detected, and the servo no longer responds to the positive command		
AL.05.1	Negative overshoot	Warning	External (or software limit) negative over-travel signal is detected, and the servo no longer responds to the negative command		
AL.05.2	Emergency stop	Warning	External shutdown signal detected		
AL.05.3	Excessive position deviation	Resettable error	Position deviation is greater than P03.26 set value detect if there is mechanical jamming Increase P03.26 set value Increase the gain, and add position smoothing filtering processing		
AL.05.4	Home position reset timeout error	Warning	Time-out error in homing, with homing time exceeding the set value of P03.35		
AL.05.5	Runaway velocity alarm	Resettable error	UVW wiring error Electric angle error Encoder cable abnormal; check whether the feedback display is correct Check whether P18.00 is set correctly		
AL.05.6	Overvelocity	Resettable error	UVW wiring error Electric angle error Gain setting unreasonable Encoder cable abnormal; check feedback display		
AL.05.7	Servo enable failure	Resettable error	When Fn auxiliary function is used, external servo enable DI is effective		
AL.05.8	STO protection	Warning	STO signal input		
AL.05.9	Excessive internal and external deviation of full closed loop	Resettable error	Check whether external encoder feedback is correct Check whether the feedback direction of the external encoder is correct Check whether the machine slips or not Set correct and suitable deviation range		

			IDTOOP series servo user manual
AL.06.0	Abnormal pulse input	Resettable error	Pulse input frequency is more than 4M reduce the upper computer's pulse frequency Check whether the pulse input wiring, shielding wire and grounding are correct
AL.06.1	Abnormal pulse input	Resettable error	Pulse input frequency is more than 4M reduce the upper computer's pulse frequency Check whether the pulse input wiring, shielding wire and grounding are correct
AL.06.2	Abnormal frequency division output	Resettable error	Frequency division output velocity is greater than 4m It is acceptable to reduce the output pulse number by one turn (P02.03)
AL.06.3	EERPOM read exception	Resettable error	Communication read function code too frequently It is acceptable to set P09.10 to 1
AL.06.4	EERPOM write exception	Resettable error	Communication read function code too frequently It is acceptable to set P09.10 to 1
AL.06.5	EERPOM exception	Resettable error	EEPROM is operated too frequently
AL.06.6	Ai1 voltage input too high	Resettable error	Ail input too large
AL.07.0	Angle identification failure	Resettable error	Make sure UVW wiring is correct Check whether the motor parameters are set correctly, and whether the polar number, resolution and polar distance required for linear motor are set correctly. Contact our personnel
AL.07.1	Angle identification failure 1	Resettable error	Make sure UVW wiring is correct The encoder cable is abnormal; Check whether the position feedback is correct Check whether the motor parameters are set correctly, and whether the polar number, resolution and polar distance required for linear motor are set correctly. Contact our personnel
AL.07.2	Angle identification failure 2	Resettable error	Make sure UVW wiring is correct The encoder cable is abnormal; Check whether the position feedback is correct

	IDTOOP series servo user manua					
			Contact our personnel			
	Offline inertia	Resettable error	Check for correct UVW wiring			
AL.07.3	identification		Check for mechanical jamming			
	failure		Check for normal motor rotation.			
	Angle		Check for motor blocked during			
AL.07.4	identification	Resettable	angle identification.			
AL.07.4	stalling	error	Check for UVW correctmechanically			
	stannig		Check for mechanical jamming			
	Power on again is					
AL.0A.0	required for	Warning	The set parameters need to be			
AL.UA.U	parameters to get	warning	powered on again.			
	effective					
			Check for loss of phase of the input			
AL.0A.2	Power phase loss	Warning	of external power supply, or it is			
AL.0A.2	warning	warning	acceptable to use $P07.05 = 2$ to			
			shield such warning			
AL.0A.4	Motor overload	Warning	Motor overload warning; reduce			
AL.VA.T	warning	warning	average load			
AL.0A.5	Motor power line	Warning	Check whether UVW is wired			
111.011.5	disconnected	,, ai ii ii g	Check whether U v w is wheth			
	Encoder external		Check the circuit of external battery			
AL.0A.6	battery	Warning	of encoder and check whether the			
	undervoltage		battery voltage is normal			
AL.0A.7	Encoder	Warning	Reduce the load rate and check			
	overheated	,, ar ming	whether the motor is heated seriously			
			Check whether P18.00 is set			
AL.10.0	Encoder	Non-resettable	correctly			
	disconnected	error	Check whether the encoder wiring is			
			correct			
AL.10.1	Encoder	Non-resettable	Data verification error or parameter			
	parameter error	error	not stored in EEPROM of motor			
	Encoder		Check whether P18.00 is set			
AL.10.2	communication	Non-resettable	correctly			
	failure	error	Check whether the encoder wiring is			
			correct			
			Check whether P18.00 is set			
AL.10.3	Error in encoder	Non-resettable	correctly			
	resolution	error	Check whether the encoder wiring is			
			correct			
	Encoder count		Check whether P18.00 is set			
AL.10.4	increment	Non-resettable	correctly			
	exception	error	Check whether the encoder wiring is			
	-		correct			
	Encoder	Non-resettable	Check whether P18.00 is set			
AL.10.5	parameter write	error	correctly			
	failure	-	Check whether the encoder wiring is			

			TD1001 series servo user manual
			correct
AL.10.6	Encoder battery failure	Non-resettable error	Check whether the external battery is disconnected or the battery level is low It is acceptable to reset the error using Fn07
AL.10.7	Encoder multi-ring count error	Non-resettable error	Check whether the external battery is disconnected or the battery level is low It is acceptable to reset the error using Fn07
AL.10.8	Encoder multi-ring counter overflow	Non-resettable error	It is acceptable to reset the error using Fn07
AL.10.9	Encoder parameter read-write check exception	Non-resettable error	Check whether P18.00 is set correctly Check whether the encoder wiring is correct
AL.10.A	AB interference of incremental encoder	Non-resettable error	Check the wiring of encoder
AL.10.B	Z interference fault of incremental encoder	Non-resettable error	Check the wiring of encoder
AL.10.C	Error after power on incremental encoder	Non-resettable error	Check whether the wiring of encoder is correct, or whether the setting of encoder type p18.00 is wrong, or whether the motor encoder is faulty
AL.10.D	Incremental encoder disconnected	Non-resettable error	Check the wiring of encoder

Chapter 10 List of Function Code

10.1 List of parameter

Related modeP stands for the position mode, S stands for the velocity mode, T stands for the torque mode, and "*" in the Unit Table stands for the Unit in case of linear motor used.

P00gi	roup	gain parameter				
Func		Description	Setting range	Unit	Default Setting	Manner of getting effective
P00	00	Self adjusting mode selection	0-manual gain adjustment 1-automatic rigid table adjustment 2-positioning mode 1 3-positioning mode 2	_	1	Effective immediately
P00	01	Group 1 response level selection	1~31	-	11	Effective immediately
P00	02	Group 1 velocity loop gain	1~20000	0.1HZ	250	Effective immediately
P00	03	Group 1 velocity loop integration time constant	15~51200	0.01ms	3183	Effective immediately
P00	04	Group 1 position loop gain	0~20000	0.1HZ	400	Effective immediately
P00	05	Group 1 torque filtering constant	0~3000	0.01ms	79	Effective immediately
P00	06	Group 2 velocity loop gain	1~20000	0.1HZ	250	Effective immediately
P00	07	Group 2 velocity loop integration time constants	15~51200	0.01ms	3183	Effective immediately
P00	08	Group 2 position loop gain	0~20000	0.1HZ	400	Effective immediately
P00	09	Group 2 torque filtering constant	0~3000	0.01ms	79	Effective immediately
P00	0A	Load inertia ratio	0~1200	0.01	100	Effective immediately
P00	0C	Torque command	0- First order low-pass filter 1- Double second	-	0	Effective immediately

				1.	DIODI SEILE	es servo user manual
Func		Description	Setting range	Unit	Default Setting	Manner of getting effective
			order filter			
P00	0D	Single parameter adjustment Zeta value	100~6000	0.01	150	Effective immediately
P00	0E	Single parameter adjustment Nvp value	100~6000	0.01	150	Effective immediately
P00	10	Velocity feedpositive gain	0~1000	0.1%	0	Effective immediately
P00	11	Velocity feedpositive filtering time	0~6400	0.01ms	50	Effective immediately
P00	12	PDFF control factor	0~1000	0.1%	1000	Effective immediately
P00	14	Torque feedpositive gain	0~1000	0.1%	0	Effective immediately
P00	15	Torque feedpositive filtering time	0~6400	0.01ms	50	Effective immediately
P00	20	Velocity feedback average filtering	0~4	-	0	Effective immediately
P00	21	Velocity feedback low-pass filtering	50~5000	HZ	5000	Effective immediately
P00	22	Torque observer cutoff frequency	1~5000	HZ	400	Effective immediately
P00	23	Torque observer proportional gain	1~8000	HZ	400	Effective immediately
P00	24	Velocity observer position compensation gain	0~3000	HZ	0	Effective immediately
P00	25	Model loop enable	0-disable 1- enable			Effective immediately
P00	26	Model loop gain	0~20000	0.1HZ	400	Effective immediately

P01 g	P01 group vibration suppression parameters						
Func co	ction de	Description	Setting range	Unit	Default setting	Manner of getting effective	
P01	00	Adaptive filter mode selection	0-adaptive notch filter does not update manual setting 1- one adaptive notch filter (group 3 is effective) 2-two adaptive notch filters (group 3 and group 4 are effective) 3-only test results are shown in P01.01 4-restore the set notch filter to default setting	_	0	Effective after shutdown	
P01	01	Vibration determination threshold	1~1000	0.1%	20	Effective immediately	
P01	02	Resonance frequency identification results	0~5000	HZ	250	Effective immediately	
P01	04	Group 1 notch filter anti resonance frequency	10~5000	ΗZ	5000	Effective immediately	
P01	05	Group 1 notch filter frequency	50~5000	ΗZ	5000	Effective immediately	
P01	06	Group 1 notch filter band width	0~20	-	2	Effective immediately	
P01	07	Group 1 notch filter attenuation level	0~99	-	0	Effective immediately	
P01	08	Group 2 notch filter antiresonance frequency	10~5000	ΗZ	5000	Effective immediately	
P01	09	Group 2 notch filter frequency	50~5000	ΗZ	5000	Effective immediately	

				11		s servo user manuar
Func co	ction de	Description	Setting range	Unit	Default setting	Manner of getting effective
P01	0A	Group 2 notch filter band width	0~20	-	2	Effective immediately
P01	0B	Group 2 notch filter attenuation level	0~99	-	0	Effective immediately
P01	0C	Group 3 notch filter anti-resonance frequency	10~5000	HZ	5000	Effective immediately
P01	0D	Group 3 notch filter frequency	50~5000	HZ	5000	Effective immediately
P01	0E	Group 3 notch filter band width	0~20	-	2	Effective immediately
P01	0F	Group 3 notch filter attenuation level	0~99	-	0	Effective immediately
P01	10	Group 4 notch filter anti-resonance frequency	10~5000	HZ	5000	Effective immediately
P01	11	Group 4 notch filter frequency	50~5000	HZ	5000	Effective immediately
P01	12	Group 4 notch filter band width	0~20	-	2	Effective immediately
P01	13	Group 4 notch filter attenuation level	0~99	-	0	Effective immediately
P01	1A	Disturbance torque compensation gain	0~1000	0.1%	0	Effective immediately
P01		Disturbance observer filter time	0~2500	0.01ms	50	Effective immediately
P01	1C	Constant torque compensation value	-1000~1000	0.1%	0	Effective immediately
P01	1 D	Positive friction compensation value	-1000~1000	0.1%	0	Effective immediately
P01	1E	Negative friction compensation value	-1000~1000	0.1%	0	Effective immediately
P01	1F	Servo low-frequency vibration position deviation judgment threshold	0~65535	р	10	Effective immediately
P01	21	Low frequency resonance frequency A	0~1000	0.1HZ	1000	Effective immediately

Func		Description	Setting range	Unit	Default setting	Manner of getting effective
P01	22	Low frequency resonance frequency A filter setting	0~10	-	2	Effective immediately
P01	23	Low frequency resonance frequency amplification factor	12~30	0.1	12	Effective immediately

P02 C	Group	Basic Parameter Se	tting			
	ction	Description	Setting range	Unit	Default setting	Manner of getting effective
P02	00	Mode selection	0-velocity mode 1-position mode 2-torque mode 3-DI switch mixed mode	-	0	Effective after shutdown
P02	01	Running direction selection	0-cw positive direction 1-ccw negative direction	-	0	Effective after re-power-on
P02	02	Frequency division output pulse phase	0-A ahead of B 1-B ahead of A	-	0	Effective after re-power-on
P02	03	Frequency division output pulse number	1~1048576	-	2500	Effective after re-power-on
P02	05	Z-pulse output polarity setting ,	0- positive polarity 1- negative polarity	-	0	Effective after re-power-on
P02	07	Velocity feedback source selection	0-encoder direct feedback 1-velocity observer	-	0	Effective after shutdown
P02	09		0- Enable automatic identification 1- Disable automatic identification	-	0	Effective after re-power-on
P02	0A	Set the default display status of the panel				
P02	0B	Enable absolute value encoder alarm	0- disable absolute value alarm 1- enable absolute alarm	-	0	Effective after shutdown
P02	10	Servo OFF shutdown mode	-2 : Slope shutdown, with DB braking	-	0	Effective after shutdown

	IDTOOP series servo user illalidat					
Func co	ction de	Description	Setting range	Unit	Default setting	Manner of getting effective
P02	11	selection Overtravel stop mode	 -1: DB shutdown DB status 0: Free shutdown, keeping operating freely. 1: Slope shutdown, keeping operating freely. 2: Zero-velocity shutdown, keeping operating freely. 0-shutting down freely 1- Zero-velocity shutdown 	_	2	Effective after shutdown
P02	12	Fault 1 shutdown mode selection	0-shutting down freely 1-DB shutdown free state 2-DB shutdown, keeping DB state	-	0	Effective after shutdown
P02	13	Fault 2 shutdown mode selection	 -4-Emergency torque shutdown, keeping DB State -3-Slope shutdown, keeping DB State -2-Slope shutdown, keeping DB State -1-DB shutdown, keeping DB state 0-Free shutdown, keeping operating freely. 1-Slope shutdown, keeping operating freely. 2-Slope shutdown, keeping operating freely. 3-Emergency torque shutdown, keeping operating freely 			Effective after shutdown

				ID.		s servo user manual
Func co	ction de	Description	Setting range	Unit	Default setting	Manner of getting effective
P02	14	Shutdown mode and shutdown state switching velocity threshold	10~1000	rpm (*mm/s)	100	Effective after shutdown
P02	18	Brake enable	0-brake disabled 1-brake enable	-	0	Effective after shutdown
P02	19	Delay from brake output ON to command receiving	0~500	ms	200	Effective after shutdown
P02	1 A	Delay from brake output Off to motor de-energized	50~1000	ms	150	Effective after shutdown
P02		Velocity threshold when brake output Off	20~300	rpm (*mm/s)	30	Effective after shutdown
P02	10	Delay from servo Off to brake output Off	1~1000	ms	500	Effective after shutdown
P02	20	Setting of energy consumption resistor	0-built in resistor 1-external resistor 2-air cooling of external resistor 3- no release.			Effective after shutdown
P02	21	Power capacity of external energy consumption resistor	1~65535	W	800	Effective after shutdown
P02	22	Resistance value of external energy consumption resistor	1~1000	Ω	50	Effective after shutdown
P02	23	Minimum value of energy consumption resistor allowable for driver	1~1000	Ω	40	Effective after shutdown
P02	24	Power capacity of built-in energy consumption resistor	1~65535	W	50	Effective after shutdown
P02	25	Resistance of	0~1000	Ω	40	Effective after shutdown

Func	ction de	Description	Setting range	Unit	Default setting	Manner of getting effective
P02	26	Heat dissipation coefficient of resistor	0~1000	%	60	Effective after shutdown
P02	29	Password set by manufacturer	0~65535	-	_	Effective immediately

P03g	roup	position mode param	leters			
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P03	00	Source of position command	0- pulse 1 - internal position mode	-	0	Effective after shutdown
P03	02		0-direction + pulse positive logic 1-direction + pulse negative logic 2-AB orthogonal 3-CW / CCW	-	0	Effective after re-power-on
P03	03	Effective selection of pulse edge	0-effective rising edge 1-effective falling edge	_	0	Effective after re-power-on
P03	04	Input pulse filtering time	0~255	25ns	10	Effective after re-power-on
P03	06	Instruction FIR filtering time constant	0~65535	0.01ms	0	Effective after shutdown
P03		Moving average time of position command	0~1280	0.01ms	0	Effective after shutdown
P03		Number of command pulses per revolution of motor		_	0	Effective after shutdown
P03	12	Group 1 electronic gear molecules	1~ 1073741824	-	10	Effective after shutdown
P03	14	Group 1 electronic gear denominator	1~ 1073741824	-	1	Effective after shutdown
P03	16	Group 2 electronic gear molecules	1~ 1073741824	-	10	Effective after shutdown
P03	18	Group 2 electronic gear denominator	1~ 1073741824	-	1	Effective after shutdown

	IDTOOP series servo user manual					
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P03	20	Soft limit function selection	0-disable soft limit function 1-enable soft limit function 2-enable soft limit function after homing			Effective after shutdown
P03	21	Soft limit minimum value	-2147483648~214748 3648	р	0	Effective after shutdown
P03	23	Soft limit maximum value	-2147483648~214748 3648	р	0	Effective after shutdown
P03	26	Fault set value of excessive position deviation	1~ 1073741824	р	314572 8	Effective after shutdown
P03	31	Reset mode of home	0~36	-	3	Effective immediately
P03	32	High-velocity search velocity of home	1~1000	rpm (*mm/s)	100	Effective immediately
P03	33	Low-velocity search velocity of home	1~1000	rpm (*mm/s)	10	Effective immediately
P03	34	Acceleration and deceleration time of home	0~10000	ms	10	Effective immediately
P03	35	Search time of home	0~60000	ms	50000	Effective immediately
P03	36	Mechanical offset of home	-2147483648~214748 3648	Р	0	Effective immediately
P03	38	Fixed length displacement of probe	-2147483648~214748 3648	Р	10000	Effective immediately
P03	3A	Fixed length velocity of probe	0~6000	rpm	1000	Effective immediately
P03	3B	Fixed length acceleration and deceleration time of probe	0~65535	ms	100	Effective immediately
P03	3C	Configuration of probe	0~0xFFFF		0	Effective immediately
P03	3D	Filtering time Unit of probe	0~255	25ns	5	effective after re-power-on

P04group velocity torque parameters							
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective	
P04	00	Velocity command	0-Digital setting 1-AI	-	0	Effective after shutdown	
P04	01	Velocity command digital setting	-9000~9000	rpm (*mm/s)	300	Effective immediately	
P04	02	Di jogging velocity setting value	-9000~9000	rpm (*mm/s)	20	Effective immediately	
P04	03	Velocity command acceleration time	0~65535	ms	20	Effective immediately	
P04	04	Velocity command deceleration time	0~65535	ms	20	Effective immediately	
P04		Jog velocity acceleration ramp time	0~65535	ms	20	Effective immediately	
P04		Analog 10V corresponding velocity	0~10000	rpm (*mm/s)	3000	Effective immediately	
P04	0A	Torque command selection	0- Digital Setting 1- 1-AI	-	0	Effective after shutdown	
P04	0B	Torque command keyboard setting	-3000~3000	0.1%	0	Effective immediately	
P04		Analog 10V corresponding torque value	0~8000	0.1%	1000	Effective immediately	
P04	0D	Torque command	0~65535	ms	0	Effective immediately	
P04	0E	Torque command deceleration time	0~65535	ms	0	Effective immediately	
P04	OF	Emergency stop torque	0~3000	0.1%	1000	Effective after shutdown	
P04	10	Positive limit of velocity	0~6000	rpm (*mm/s)	6000	Effective immediately	
P04	11	Negative limit of velocity	0~6000	rpm (*mm/s)	6000	Effective immediately	
P04	12	Positive limit of torque	0~3500	0.1%	3000	Effective immediately	
P04	13	Negative limit of torque	0~3500	0.1%	3000	Effective immediately	
P04	14	Positive limit value of internal velocity during torque control	0~6000	rpm (*mm/s)	3000	Effective immediately	

	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P04	15	Negative limit value of internal velocity during torque control	0~6000	rpm (*mm/s)	3000	Effective immediately

P05 g	group	input parameters				
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P05	00	DI function source selection bit0~bit15	0~65535	-	0	Effective after shutdown
P05	01	DI function source selection bit16~bit31	0~65535	_	0	Effective after shutdown
P05	02	DI function source selection bit32~bit47	0~65535	-	0	Effective after shutdown
P05	03	DI function source selection bit48~bit63	0~65535	_	0	Effective after shutdown
P05	04	DI1 terminal function selection	0~30	-	1	Effective after shutdown
P05	05	DI1 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P05	06	DI2 terminal function selection	0~30	-	0	Effective after shutdown
P05	07	DI2 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P05	08	DI3 terminal function selection	0~30	-	0	Effective after shutdown
P05	09	DI3 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P05	0A	DI4 terminal function selection	0~30	-	0	Effective after shutdown
P05	0B	DI4 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P05	0C	DI5 terminal function selection	0~30	-	0	Effective after shutdown
P05	0D	DI5terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P05	0E	DI6 terminal function selection	0~30	-	0	Effective after shutdown

					ioor serie	s servo user manuar
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P05	0F	DI6 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P05	10	DI7 terminal function selection	0~30	-	0	Effective after shutdown
P05	11	DI7 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P05	12	DI8 terminal function selection	0~30	-	0	Effective after shutdown
P05	13	DI8 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P05	2A	Virtual DI logic setting bit0~bit15	0~65535	-	0	Effective after shutdown
P05	2B	Virtual DI logic setting bit16~bit31	0~65535	-	0	Effective after shutdown
P05	2C	Virtual DI logic setting bit32~bit47	0~65535	-	0	Effective after shutdown
P05	2D	Virtual DI logic setting bit48~bit63	0~65535	-	0	Effective after shutdown
P05	30	AI1 offset	-5000~5000	1 m v	0	Effective immediately
P05	31	Input filtering time	0~65535	0.01ms	200	Effective immediately
P05	32	AI1dead zone	0~10000	0.1mv	100	Effective immediately
P05	33	AI1 null shift	-5000~5000	0.1mv	0	Effective immediately
P05	40	DI filtering time	0~65535	0.01us	1000	Effective immediately

P06 g	P06 group output parameters						
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective	
P06	00	DO1 terminal function selection	0~20	-	5	Effective after shutdown	
P06		DO1 terminal logic selection	0- active low 1- 1-active high	-	0	Effective after shutdown	
P06	02	DO2 terminal function selection	0~20	-	6	Effective after shutdown	
P06	03	U	2- active low 3- active high	-	0	Effective after shutdown	
P06	04	DO3 terminal function selection	0~20	-	0	Effective after shutdown	

			· · · · · · · · · · · · · · · · · · ·		loor series	s servo user manual
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P06	05	DO3 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P06	06	DO4 terminal function selection	0~20	-	0	Effective after shutdown
P06	O/	DO4 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P06	08	DO5 terminal function	0~20	-	0	Effective after shutdown
P06	09	DO5 terminal logic selection	0-active low 1-active high	-	0	Effective after shutdown
P06	20	Virtual DO logic setting bit0~bit15	0~65535	-	0	Effective after shutdown
P06	21	Virtual DO logic setting bit16~bit31	0~65535	-	0	Effective after shutdown
P06		Virtual DO logic setting bit32~bit47	0~65535	-	0	Effective after shutdown
P06	23	Virtual DO logic setting bit48~bit63	0~65535	-	0	Effective after shutdown
P06	2 C	Positioning completion range	100	р	0	Effective immediately
P06	2D	Positioning completion hold time	0~2000	ms	0	Effective immediately
P06	2E	window unit setting		-	0	Effective immediately
P06	30	Zero velocity clamp / zero fixed velocity command threshold		rpm (*mm/s)	10	Effective immediately
P06	31	Motor rotation state threshold	1~1000	rpm (*mm/s)	20	Effective immediately
P06	32	Velocity consistent signal width	1~200	rpm (*mm/s)	10	Effective immediately
P06	33	Velocity reach signal threshold	10~6000	rpm (*mm/s)	1000	Effective immediately
P06	34	Zero velocity output signal threshold	1~200		10	Effective immediately
P06	35	Velocity DO filter time	0~65535	0.1ms	0	Effective immediately
P06	3A	Torque reaches reference value	0~3000	0.1%	0	Effective immediately
P06	3B	Output torque value when torque reach DO signal is on	200~3000	0.1%	200	Effective immediately

	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P06	3C	Output torque value when torque reach DO signal is off	100~3000	0.1%	100	Effective immediately

P07g	P07group extended function parameters					
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P07	00	Stalling over-temperature protection enable	0~disable 1-enable	-	1	Effective immediately
P07	01		0-not shut down 1- shut down	-	0	Effective immediately
P07	02	Runaway protection selection	0-shield runaway alarm 1-enable runaway alarm	-	1	Effective after shutdown
P07	03	Encoder multi-ring overflow fault prohibition	0- enable alarm 1-shield alarm	-	1	Effective after shutdown
P07	04	UVW Phase sequence identification enable	0- disable phase sequence identification 1- enable phase sequence identification	_	1	Effective after shutdown
P07	05	loss protection	0-enable absent alarm 1-enable absent alarm 2-shield missing item	-	0	Effective immediately
P07	06	Fault record save switch	0-save 1-unsave	-	0	Effective after shutdown
P07	07	Power failure save	0 - no power failure save 1-enable power failure save	-	0	Effective after shutdown
P07	08	Shield model identification	0-use automatic model identification 1-set the model manually	-	0	Effective after shutdown
P07	09	Set the default display status of the panel	0~0x25 After use, the panel displays the status corresponding to U00.XX by default			Effective after shutdown

	IDTOOP series servo user manual						
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective	
P07	10	protection time window	10~1000	ms	20	Effective immediately	
P07	11	Motor overload protection gain	50~300	%	100	Effective immediately	
P07	12	Linear motor PTC alarm enable	1~ alarm	-	0	Effective immediately	
P07	14	Over velocity judgment threshold		rpm (*mm/s)	0	Effective after shutdown	
P07	15	Velocity display filtering time	0~5000	ms	0	Effective after shutdown	
P07	1A	when nowered on	0 - no reset after power on 1-reset after power on	-	-	Effective after shutdown	
P07		ROM disabled when encoder is powered on	0 - do not read motor parameters 1 - read motor parameters	_	-	Effective after shutdown	
P07	1D		0-disable 1-enable	-	0	Effective after shutdown	
P07	20	Slope shutdown acceleration and deceleration time		ms	50	Effective immediately	
P07	21	deceleration time	0~10000	ms	5	Effective immediately	
P07	22	Torque stop torque acceleration	0~3000	0.1%	500	Effective immediately	

P08 f	P08 full closed-loop parameters							
Function code		Description	Setting range	Unit	Defaul t setting	getting		
P08	(0)	Full closed-loop operation mode	0 ~ disable full closed-loop 1-enable full closed-loop	-	0	Effective immediately		
P08	01	External encoder running direction selection	0- positive 1- negative	-	0	effective after re-power-on		
P08	02	External encoder resolution	0~8388608	-	10000	Effective after shutdown		

-	TDTOOP series servo user manual						
	ction ode	Description	Setting range	Unit	Defaul t setting	getting	
P08	04	Full closed-loop vibration suppression gain	-300.0~300.0	-	1	Effective after shutdown	
P08	05	Full closed-loop vibration suppression cutoff frequency	10~5000	HZ	500	Effective after shutdown	
P08	06	Full closed loop velocity feedback correction coefficient	0~120.0	-	100.0		
P08	07	Filtering time constant of inner and outer loop position deviation	0~1000	ms	0	Effective after shutdown	
P08	0C	Maximum allowable deviation of internal and external loop encoder	0~2,147,483,648	External encoder's Unit	0	Effective after shutdown	
P08	0E	Actual deviation of internal and external loop encoder	Display	External encoder's Unit			
P08	10	Internal encoder count value	Display	Encoder's Unit			
P08	12	External encoder count value	Display	External encoder's Unit			

P09	P09 group modbus communication parameters							
	ction ode	Description	Setting range	Unit	default setting	getting		
P09	00	485 communication node	0~128	-	1	Effective immediately		
P09	01	Baud rate setting	02400 1-4800 2-9600 3-19200 4-38400 5-57600 6-115200	-	6	Effective immediately		
P09	02	Data format	0-no check 2 stop		0	Effective		
Function code		Description	Setting range	Unit	default setting	getting		
------------------	----	---	--	------	--------------------	--------------------------	--	--
			bits 1-even check 1 stop bit 2-odd check 1 stop bit 2 po check 1 stop bit			immediately		
P09	03	Delay response time	3-no check 1 stop bit 100	ms	0	Effective immediately		
P09	0A	232 baud rate setting	02400 1-4800 2-9600 3-19200 4-38400 5-57600 6-115200	-	6	Effective immediately		
P09	10	485 communication function code forbid to save EEPROM or not	0- save EEPROM 1- Unsave EEPROM	-	0	Effective immediately		

P0A	POA group extended parameter group							
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective		
P0A	00	Offline inertia identification mode	0. Positive and negative operation mode 1. Single direction operation mode	-	1	Effective immediately		
P0A		Maximum velocity reached during inertia identification	100~1000	rpm (*mm/s)	500	Effective after shutdown		
P0A	03	Time of acceleration to maximum velocity in inertia identification	20~800	ms	120	Effective after shutdown		
P0A	0A	UVW phase sequence identification enable	O-disable phase sequence identification 1-enable phase sequence					

	1D1001 series servo user manual							
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective		
			identification					
P0A	0B	Selection of angle identification mode	0- pre-positioning 1-open-loop jogging 2-closed-loop jogging	-	0	Effective after shutdown		
P0A	0C	Electric angle action window of angle identification micromotion method	0~900		2	Effective after shutdown		
P0A	0D	Stop window of angle identification jogging method	0~100	р	3	Effective after shutdown		
P0A	0E	Setting electric angle by direct pre-positioning method	0~1800	0.1 °	10	Effective after shutdown		
P0A	0F	Determine whether Hall signal identification is necessary	0-disable hall identification 1-enable hall identification	-	0	Effective after shutdown		

P10	P10 group internal position group							
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective		
P10	00	Internal position operation mode selection	0- Single operation 1- Cyclic operation	-	0	Effective immediately		
P10	03	Number of operation segments in internal position	1~16	-	3	Effective immediately		
P10	08	Displacement of Segment 1	-2147483648~214748 3648	User's Unit	10000	Effective immediately		
P10	0A	Velocity of Segment 1	0~9000	Rpm (mm/s)	300	Effective immediately		
P10	0B	Acceleration time of Segment 1	0~65535	ms	10	Effective immediately		
P10	0C	Deceleration time of Segment 1	0~65535	ms	10	Effective immediately		
P10	0D	Waiting time of Segment 1	0~65535	ms	0	Effective immediately		
P10	0E	Property	0 ~ absolute	-	0	Effective		

						s servo user manuar
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
		configuration of Segment 1	displacement 1 ~ incremental displacement			immediately
P10	0F	Displacement of Segment 2	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	11	Velocity of Segment 2	0~9000	Rpm (mm/s)	300	Effective immediately
P10	12	Acceleration time of Segment 2	0~65535	ms	10	Effective immediately
P10	13	Deceleration time of Segment 2	0~65535	ms	10	Effective immediately
P10	14	Waiting time of Segment 2	0~65535	ms	0	Effective immediately
P10	15	Property configuration of Segment 2	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately
P10	16	Displacement of Segment 3	-2147483648~214748 3648	user's Unit	10000	Effective immediately
P10	18	Velocity of Segment	0~9000	Rpm (mm/s)	300	Effective immediately
P10	19	Acceleration time of Segment 3	0~65535	ms	10	Effective immediately
P10	1 A	Deceleration time of Segment 3	0~65535	ms	10	Effective immediately
P10	1 B	Waiting time of Segment 2	0~65535	ms	0	Effective immediately
P10	1C	Property configuration of Segment 3	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately
P10	1 D	Displacement of Segment 4	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	1F	Velocity of Segment 4	0~9000	Rpm (mm/s)	300	Effective immediately
P10	20	Acceleration time of Segment 4	0~65535	ms	10	Effective immediately
P10	21	Deceleration time of Segment 4	0~65535	ms	10	Effective immediately
P10	22	Waiting time of Segment 4	0~65535	ms	0	Effective immediately
P10	23	Property configuration of Segment 4	0~Absolute displacement 1~Incremental	-	0	Effective immediately

IDTOOP series servo user manual						
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
			displacement			
P10	24	Displacement of Segment 5	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	26	Velocity of Segment 5	0~9000	Rpm (mm/s)	300	Effective immediately
P10	27	Acceleration time of Segment 5	0~65535	ms	10	Effective immediately
P10	28	Deceleration time of Segment 5	0~65535	ms	10	Effective immediately
P10	29	Waiting time of	0~65535	ms	0	Effective immediately
P10	2A	Property configuration of Segment 5	0~Absolute displacement 1~Incremental displacement	_	0	Effective immediately
P10	2B	Displacement of Segment 6	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	2D	Velocity of Segment 6	0~9000	Rpm (mm/s)	300	Effective immediately
P10	2E	Acceleration time of Segment 6	0~65535	ms	10	Effective immediately
P10	2F	Deceleration time of Segment 6	0~65535	ms	10	Effective immediately
P10	30	Waiting time of Segment 6	0~65535	ms	0	Effective immediately
P10	31	Property configuration of Segment 6	0~Absolute displacement 1~Incremental displacement	_	0	Effective immediately
P10	32	Displacement of Segment 7	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	34	Velocity of Segment 7	0~9000	Rpm (mm/s)	300	Effective immediately
P10	35	Acceleration time of Segment 7	0~65535	ms	10	Effective immediately
P10	36	Deceleration time of Segment 7	0~65535	ms	10	Effective immediately
P10	37	Waiting time of Segment 2	0~65535	ms	0	Effective immediately
P10	38	Property configuration of Segment 7	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately

TD100P series servo user manual						
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P10	39	Displacement of Segment 8	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	3B	Velocity of Segment 8	0~9000	Rpm (mm/s)	300	Effective immediately
P10	3C	Acceleration time of Segment 8	0~65535	ms	10	Effective immediately
P10	3D	Deceleration time of Segment 8	0~65535	ms	10	Effective immediately
P10	3E	Waiting time of Segment 8	0~65535	ms	0	Effective immediately
P10	3F	Property configuration of Segment 8	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately
P10	40	Displacement of Segment 9	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	42	Velocity of Segment 9	0~9000	Rpm (mm/s)	300	Effective immediately
P10	43	Acceleration time of Segment 9	0~65535	ms	10	Effective immediately
P10	44	Deceleration time of Segment 9	0~65535	ms	10	Effective immediately
P10	45	Waiting time of Segment 9	0~65535	ms	0	Effective immediately
P10	46	Property configuration of Segment 9	0~Absolute displacement 1~Incremental displacement	_	0	Effective immediately
P10	47	Displacement of Segment 10	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	49	Velocity of Segment 10	0~9000	Rpm (mm/s)	300	Effective immediately
P10	4A	Acceleration time of Segment 10	0~65535	ms	10	Effective immediately
P10	4B	Deceleration time of Segment 10	0~65535	ms	10	Effective immediately
P10	4C	Waiting time of Segment 10	0~65535	ms	0	Effective immediately
P10	4D	Property configuration of Segment 10	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately
P10	4E	Displacement of Segment 11	-2147483648~214748 3648	User's Unit	10000	Effective immediately

			IDTOOP series servo user manual						
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective			
P10	50	Velocity of Segment 11	0~9000	Rpm (mm/s)	300	Effective immediately			
P10	51	Acceleration time of Segment 2	0~65535	ms	10	Effective immediately			
P10	52	Deceleration time of Segment 11	0~65535	ms	10	Effective immediately			
P10	53	Waiting time of Segment 11	0~65535	ms	0	Effective immediately			
P10		Property configuration of Segment 11	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately			
P10	55	Displacement of Segment 12	-2147483648~214748 3648	User's Unit	10000	Effective immediately			
P10	57	Velocity of Segment 12	0~9000	Rpm (mm/s)	300	Effective immediately			
P10	58	Acceleration time of Segment 12	0~65535	ms	10	Effective immediately			
P10	59	Deceleration time of Segment 12	0~65535	ms	10	Effective immediately			
P10	5 A	Waiting time of Segment 12	0~65535	ms	0	Effective immediately			
P10		Property configuration of Segment 12	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately			
P10	5C	Displacement of Segment 13	-2147483648~214748 3648	User's Unit	10000	Effective immediately			
P10	5E	Velocity of Segment 13	0~9000	Rpm (mm/s)	300	Effective immediately			
P10	5F	Acceleration time of Segment 13	0~65535	ms	10	Effective immediately			
P10	60	Deceleration time of Segment 13	0~65535	ms	10	Effective immediately			
P10	61	Waiting time of Segment 13	0~65535	ms	0	Effective immediately			
P10	62	Property configuration of Segment 13	0~Absolute displacement 1~Incremental displacement	_	0	Effective immediately			
P10	63	Displacement of Segment 14	-2147483648~214748 3648	User's Unit	10000	Effective immediately			
P10	65	Velocity of Segment 14	0~9000	Rpm (mm/s)	300	Effective immediately			

				10	i uui serie	s servo user manual
	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P10	66	Acceleration time of Segment 14	0~65535	ms	10	Effective immediately
P10	67	Deceleration time of Segment 14	0~65535	ms	10	Effective immediately
P10	68	Waiting time of Segment 14	0~65535	ms	0	Effective immediately
P10		Configuration of Segment 14	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately
P10	64	Displacement of	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	6C	Velocity of Segment 15	0~9000	Rpm (mm/s)	300	Effective immediately
P10	6D	Acceleration time of Segment 15	0~65535	ms	10	Effective immediately
P10	6E	Deceleration time of Segment 15	0~65535	ms	10	Effective immediately
P10	6F	Waiting time of Segment 15	0~65535	ms	0	Effective immediately
P10		Property configuration of Segment 15	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately
P10	71	Displacement of Segment 16	-2147483648~214748 3648	User's Unit	10000	Effective immediately
P10	73	Velocity of Segment 16	0~9000	Rpm (mm/s)	300	Effective immediately
P10	74	Acceleration time of Segment 17	0~65535	ms	10	Effective immediately
P10	75	Deceleration time of Segment 17	0~65535	ms	10	Effective immediately
P10	76	Waiting time of Segment 17	0~65535	ms	0	Effective immediately
P10	77	Property configuration of Segment 17	0~Absolute displacement 1~Incremental displacement	-	0	Effective immediately

P18 group motor parameters

Table of parameters for rotating motor :

Fun	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P18	00	Model of motor encoder	0~65535	-	0x1012	Effective after re-power-on
P18	02	Motor parameters of incremental encoder	0~65535	-	20001	Effective after re-power-on
P18	03	Number of encoder lines	1~83888608	р	2500	Effective after re-power-on
P18	07	Absolute encoder position offset	0~65535	р	-	Effective after re-power-on
P18	0F	Bus encoder data transmission compensation time	0~10000	0.01ms	0	Effective after re-power-on
P18	10	Current loop configuration	0~3	-	0	Effective after re-power-on
P18	11	Compensation coefficient of back EMF	0~5000	0.1%	500	Effective immediately
P18	12	D-axis coupling voltage compensation system	0~5000	0.1%	500	Effective immediately
P18	13	Q-axis coupling voltage compensation system	0~5000	0.1%	500	Effective immediately
P18	14	Current loop kp	1~20000	HZ	2000	Effective immediately
P18	15	Current loop ki	0~2000	0.01	100	Effective immediately
P18	20	Rated power	1~65535	0.01kw	-	Effective after shutdown
P18	22	Rated current	1~65535	0.01A	-	Effective after shutdown
P18	24	Maximum current	1~65535	0.01A	-	Effective after shutdown
P18	26	Rated torque	10~65535	0.01Nm	-	Effective after shutdown
P18	28	Maximum torque	10~65535	0.01Nm	-	Effective after shutdown
P18	2A	Rated velocity	10~9000	rpm	-	Effective after shutdown

	ction ode	Description	Setting range	Unit	Default setting	Manner of getting effective
P18	2C	Maximum velocity	10~9000	rpm	-	Effective after shutdown
P18	2E	Rotational inertia	1~65535	0.01kg cm^2	-	Effective after shutdown
P18	30	Pole pairs of permanent magnet synchronous motor	1~100	-	-	Effective after shutdown
P18	31	Stator resistance	1~65535	0.001Ω	-	Effective after shutdown
P18	32	Q-axis inductance	1~65535	0.01H	-	Effective after shutdown
P18	33	D-axis inductance	1~65535	0.01H	-	Effective after shutdown
P18	34	Back EMF coefficient	1~65535	0.01mv / rpm	-	Effective after shutdown
P18	36	Torque coefficient	1~65535	0.01N/ A	-	Effective after shutdown

Parameter table of linear motor :

Func		Description	Setting range	Unit	Default setting	Manner of getting effective
P18	00	Model of motor encoder	0~65535	-	0xA000	Effective after re-power-on
P18	05	Pole distance of linear motor	1~65535	0.01mm	3200	Effective after re-power-on
P18	06	Resolution of grating ruler	1~10000	0.01um	100	Effective after re-power-on
P18	07	Absolute encoder position offset	0~65535	р	-	Effective after re-power-on
P18	09	HALL signal UVW state 1 electrical angle	0~3600	0.1 °	0	Effective after re-power-on
P18	0A	HALL signal UVW state 2 electrical angle	0~3600	0.1 °	0	Effective after re-power-on
P18	0B	HALL signal UVW state 3 electrical angle	0~3600	0.1 °	0	Effective after re-power-on
P18	0C	HALL signal UVW state 4 electrical angle	0~3600	0.1 °	0	Effective after re-power-on
P18	0D	HALL signal UVW state 5 electrical	0~3600	0.1 °	0	Effective after re-power-on

				10	ioor serie	s servo user manuar
Function code		Description	Setting range	Unit	Default setting	Manner of getting effective
		angle				
P18	0E	HALL signal UVW state 6 electrical angle	0~3600	0.1 °	0	Effective after re-power-on
P18	10	Current loop configuration	0~3	-	0	Effective after re-power-on
P18	11	Compensation coefficient of back EMF	0~5000	0.1%	500	Effective immediately
P18	12	D-axis coupling voltage compensation system	0~5000	0.1%	500	Effective immediately
P18	13	Q-axis coupling voltage compensation system	0~5000	0.1%	500	Effective immediately
P18	14	Current loop kp	1~20000	HZ	2000	Effective immediately
P18	15	Current loop ki	0~2000	0.01	100	Effective immediately
P18	20	Rated power	1~65535	0.01kw	-	Effective after shutdown
P18	22	Rated current of motor (continuous current)	1~65535	0.01A	-	Effective after shutdown
P18	24	Maximum current	1~65535	0.01A	-	Effective after shutdown
P18	26	Rated torque (continuous thrust)	10~65535	0.01Nm	-	Effective after shutdown
P18	28	Maximum torque	10~65535	0.01Nm	-	Effective after shutdown
P18	2A	Rated velocity	10~9000	mm/s	-	Effective after shutdown
P18	2C	Maximum velocity	10~9000	mm/s	-	Effective after shutdown
P18	2E	Rotor mass	1~65535	g	-	Effective after shutdown
P18	30	Pole pairs of permanent magnet synchronous motor	1~100	-	1	Effective after shutdown
P18	31	Stator resistance	1~65535	0.001Ω	-	Effective after shutdown

Function code		Description Setting range Unit		Default setting	Manner of getting effective	
P18	32	Q-axis inductance	1~65535	0.01H	-	Effective after shutdown
P18	33	D-axis inductance	1~65535	0.01H	-	Effective after shutdown
P18	34	Back EMF coefficient	1~65535	0.01v/ mm/s	-	Effective after shutdown
P18	36	Torque coefficient (thrust constant)	1~65535	0.01N/ A	-	Effective after shutdown

Note: For rotating motor Tamagawa 23bit, P18.00 is set to 0x1012, and Tamagawa 17bit is set to 0x1010, with the 2500 line motor to be set to 0x2020 and linear motor to be set to 0xA000

P19g	roup	drive parameters				
Func		Description	Setting range	Unit	Default setting	Manner of getting effective
P19	00	Drive model setting	0~65535	-	-	Effective after shutdown
P19	0A	Carrier frequency	4000~16000	HZ	8000	Effective after shutdown
P19	0B	Dead time	0~2000	0.01u	200	Effective after shutdown
P19	0C	Minimum opening time of lower bridge of bootstrap circuit	0~200	0.1u	50	Effective after shutdown
P19	0D	Relative gain of UV sampling	1~65535	-	32767	Effective after shutdown
P19	10	Measuring range of current sensor	1~999999	0.01A	-	Effective after shutdown
P19	12	FPGA phase current protection point	0~65535	0.1% current measur- ing range	-	Effective after shutdown
P19	14	DC bus overvoltage protection point	0~65535	v	-	Effective after shutdown
P19	15	DC bus voltage release point	0~65535	v	-	Effective after shutdown
P19	16	DC Bus oltageundervoltage point	0~65535	v	-	Effective after shutdown
P19	17	Bus voltage gain adjustment	0~2000	0.1%	1000	Effective after shutdown

-						s ser vo user manau
Func		Description	Setting range	Unit	Default setting	Manner of getting effective
P19	1B	Command scheduling frequency division factor	0: 4KHZ 1: 2KHZ 2:1KHZ	_	0	Effective after shutdown
P19	20	Sigma_Delta filtering time	0~3	25ns	2	Effective after shutdown
P19	21	Current sampling Sinc3 filter data extraction rate	0~3	-	1	Effective after shutdown
P19	22	TZ signal filtering time	0~31	ns	15	Effective after shutdown
P19	23	Orthogonal encoder filtering time	0~255	ns	30	Effective after shutdown
P19	24	Filtering time of linear encoder	0~255	ns	30	Effective after shutdown

U00 g	U00 group status display parameters					
Func cod		Description	Display range	Unit		
U00	00	Motor velocity	-32767~32767	rpm(*mm/s)		
U00	01	Input signal monitoring DI	0~65535	-		
U00	03	Output signal monitoring DO	0~65535	-		
U00	05	Input command count (Use U00.34 if you need to view external commands)	-2147483647 ~2147483647	Unit of command		
U00	07	Absolute position counter	-2147483647 ~2147483647	Unit of command		
U00	09	Feedback pulse counter	-2147483647 ~2147483647	Unit of pulse		
U00	0B	Deviation counter	-2147483647 ~2147483647	Unit of pulse		
U00	0E	Average load rate	0~3000	0.1%		
U00	0F	Velocity command	-9000~9000	rpm(*mm/s)		
U00	10	Internal torque command	-4000~4000	0.1%		
U00	11	Mechanical angle	0~3600	0.1 °		
U00	12	Electrical angle	0~3600	0.1 °		
U00	14	U current sample (rms)	-30000~30000	0.01A		
U00	15	Bus voltage	0~30000	0.1v		
U00		AI voltage value	0~20000	0.001v		
U00		Driver temperature	-10~200	Celsius degree		
U00	1D	Total run time	0~4294967296	0.1s		

			TD100P series se	ervo user manuar
Func co		Description	Display range	Unit
U00	20	Total number of input pulses	-2147483647 ~2147483647	-
U00	23	Extended data / multi-ring data of serial encoder 0~65535		-
U00	24	Feedback single turn position of serial encoder	0~8388608	р
U00	34	Actual input position command	-2147483647~ 2147483647	-
U00	36	5 Incremental encoder AB count -2147483647~ 2147483647		-
U00	38	Incremental encoder Z signal count	0~65535	-
U00	3E	Function code group number with parameter exception	-	-
U00	3F	Function code intra group offset with parameter exception	-	-
U00	40	Absolute encoder fault information given by FPGA	-	-
U00	41	System state information given by FPGA	-	-
U00	42	System fault information given by FPGA	-	-
U00	43	Error information of incremental encoder	-	-
U00	44	Error information of Nikon encoder	-	-
U00	45	Error information of Tamagawa encoder	-	-
U00	43	Error information of Sankyo encoder	-	_

U01g	U01group fault and display parameters					
Func co		Description	Display range	Unit		
U01	00	Fault record digital setting	0~11	_		
U01	01	Selected fault code	0~65535	-		
U01	02	Internal fault code for the selected fault	0~65535	-		
U01	03	Time stamp of the selected fault	0~4294967296	0.1s		
U01	05	Velocity in case of selected fault	-37767~32767	rpm(*mm/s)		
U01	06	Phase U current in case of selected fault	-37767~32767	0.01a		
U01	07	Phase V current in case of selected fault	-37767~32767	0.01a		
U01	08	Bus voltage in case of selected fault	0~3000	0.1v		
U01	09	Input terminal status in case of selected fault	0~65535	-		
U01	0A	Output terminal status in case of selected fault	0~65535	-		
U01		Absolute encoder fault information given by FPGA in case of selected fault	0~65535	-		
U01	11	System status information given by FPGA in case of selected fault	0~65535	-		
U01	12	System fault information given by FPGA in case of selected fault	0~65535	-		

U02g	U02group software version display parameters						
Function code		Description	Display range	Unit			
U02	00	MCU Software version	-	-			
U02	01	FPGA Software version	-	-			
U02	02	MCU nonstandard number	-	-			
U02	03	Fpga nonstandard number	-	-			
U02	04	Temporary version number	-	-			

Fgroup a	uxiliary function parameters	
Function code	Description	Setting range
F00	Panel key velocity Jog	-
F01	Inertia identification enable	-
F02	Emergency stop	0~ no operation 1~ emergency stop
F03	Initial angle identification of absolute encoder	0~ no operation 1 ~ angle identification
F04	Reset Function code	0~ no operation 1 ~ reset function code
F05	Fault reset operation	0~ no operation 1 ~ fault reset
F06	Software reset operation	0~ no operation 1 ~ software reset
F07	Absolute encoder reset operation	0~ no operation 1 ~ clear multi-ring position 2 ~ clear multi-ring position and reset fault
F08	Absolute encoder operation	0~ no operation 1~ write rom 2~ read rom
F09	AI1 automatic zero offset adjustment	0~ no operation 1 ~ AI1 automatic correction
F0A	Position Jog jogging	-
F0B	Reset fault record	0~ no operation 1 ~ reset fault record

10.2 DI/DO function

DIfunction param	eter setting
DI function serial	DI function description
number	
1	Servo enable SRV_ON
2	Positive limit POT
3	Negative limit NOT
4	Home switch ORGP
5	Trigger homing enable Execute_Homing
6	Internal position mode trigger Execute_PP
7	Fault reset A_Clr
8	Operation mode switching CmdSign
9	Emergency stop signal E_Stop
10	Pause signal HaltOption
11	Operation mode switching 1Mode_Sel1
	Operation mode switching 2Mode_Sel2
	where (1Mode_Sel1=0 and Mode_Sel2=0) is position mode
12	(1Mode_Sel1=1 and Mode_Sel2=0) is velocity mode
	(1Mode_Sel1=0 and Mode_Sel2=1) is torque mode
	(1Mode_Sel1=1 and Mode_Sel2=1) is position mode
13	Positive jogging JogCmdP
14	Negative joggingJogCmdN
15	Zero position fixing ZeroLock
16	Gain switching Gain
17	Electronic gear ratio switching GearSw
18	Pulse prohibition INH
19	Pulse deviation clearing CL
20	Probe release probeEnable

DO function parameter setting

DO function serial number	DO functional description
1	Servo ready status output SRdy
2	Servo enable state output Son
3	Positioning OK output INP
4	Warning output signal Warn
5	Fault output signal Alm
6	Brake signal Blk
7	Homing OK output HomeOK
13	Zero velocity signal output SZero
14	velocity consistent signal VIn
15	velocity reach output VRot
16	Torque command reach signal ToqReach
17	Probe locking ProbeLock

Chapter 11 Commissioning of Linear Motor

11.1 Procedure for commissioning of linear motor

Figure 11-1 Flow Chart for Commissioning of Linear Motor

11.2 Parameter setting of linear motor

1. Set the parameters of linear motor:

	P18.00 Linear motor code	Setting range	Unit	Factory default	Related mode			
		1~65535	-	0xA000	Р	S	Т	
Notes:The parameter of linear motor must be set to 0xA000								

P18.05 Pole distance of	Setting range	Unit	Factory default		elate node	
linear motor	1~65535	0.01mm	32.00	Р	S	Т
otes:	les for example the n	olo distance	is 25 mm with	6 D1	۹ <u>۵</u> ۶	to

Set the distance length of N-N poles, for example, the pole distance is 25mm, with P18.05 to be set to 25.00.

	Setting	Unit	Factory	Rel	atec	1
P18.06 Resolution of	range	Onit	default	mo	de	
grating ruler	1~10000	0.01um	10	Р	S	Т

Notes:

Set the Unit of grating ruler resolution to 0.01u, i.e. the distance traveled by a pulse (after quadruple frequency) fed back by the grating ruler.

If the resolution of the grating ruler is 5um, set P18.06 to 5.00.

P18.22 Rated current of	Setting range	Unit	Factory default		elate node		
motor (continuous current)	1~10000	0.01A	10	Р	S	Т	

Notes:

Set the rated current value of the motor, Unit0.01A

If the rated current of the motor is 3.4A, set P18.2 to 3.40.

P18.24 Maximum current of	Setting range	Unit	Factory default		elate node	
motor	1~10000	0.01A	10	Р	S	Т

Notes:

Set the maximum current value of the motor, Unit0.01A

If the maximum current of the motor is 12.3A, set P18.24 to 12.30.

P18.26 Rated torque	Setting range	Unit	Factory default		elate node	
(continuous thrust)	1~65535	0.01N	10	Р	S	Т

Notes:

Set the rated torque (continuous thrust value) of the motor, for example, the continuous thrust of the linear motor is 106N,

set P18.26 to 106.00

	P18.2A Rated velocity of	ated velocity of Setting range Un	Unit	Factory default		elate node	
	motor	10~9000	mm/s	3000	0P	S	Т
No	otes:						
Tł	ne default is 3000 mm/s.						

P18.2C Maximum velocity	Setting range	Unit	Factory default	·		
of motor	10~9000	mm/s	5000	Р	S	Т
otes: he default is 5000mm/s						

P18.2E Rotor mass	Setting range	Unit	Factory default		elate node		
	1~65535	g	10	Р	S	Т	

Notes:

Set the unit of rotor mass to g, for example, the mass of motor rotor is 1.3kg.

Set P18.2E to 1300

P18.30 Number of pole-pairs	Setting range	Unit	Factory default	2		
	1~65535	-	-	Р	S	Т

Notes: The linear motor can be directly set to 1

P18.31 Resistance value of	Setting range	Unit	Factory default		elate node	
stator resistor	1~65535	0.001Ω	10	Р	S	Т

Notes:

Set the resistance value of the resistor of the motor stator, for example, if the motor linear resistance is 2.6Ω , the stator resistance is $2.6/2=1.3\Omega$ Set P18 31 to 1 300

Set	P18.31	to 1.300	

P18.32 Lq inductance value	Setting range	Unit	Factory default		elate node	
of stator	1~65535	0.01mh	10	Р	S	Т

Notes:

Set the inductance value of stator Lq , for example, if the linear inductance value is 8.6mh the inductance of stator is 8.6/2 = 4.3 mH.

Set P18.32 to 4.30

	P18.33 Ld inductance value of stator	Setting range	Unit Factory default			Related mode		
		1~65535	0.01mh	10	Р	S	Т	

Notes:

Set the Ld inductance value of the stator, for example, if the linear inductance is 8.6mh, the stator inductance is 8.6/2 = 4.3mH.

Set P18.32 to 4.30 (it will be OK to be set to that similar to P18.32)

D19 24 Deak EME coefficient	Setting range	Unit	Factory default	Relate mode		
P18.34 Back EMF coefficient	1~65535	0.01v/ mm/s	10	Р	S	Т

Notes:

Set the back EMF coefficient of the motor, for example, if the back EMF of the motor is 27.6 V/m/s,

Set P18.34 to 27.60

	P18.36 Torque coefficient (thrust constant)	Setting range	Unit Factory default		Related mode		
(1~65535	0.01N/A	10	Р	S	Т

Notes:

Set the thrust constant of the motor, for example, if the thrust constant of the motor is 22.4N/ASet to 22.40

Effective after re-power-on at the end of setting,

11.3 Check the signal feedback of linear motor

Check the feedback pulse count of U00.09 grating ruler, and push the motor for a distance to observe whether U00.09 increases (or decreases) the corresponding pulse number. For example, if the resolution of grating ruler P18.06 is 1.00u, then U00.09 should increase 100000 pulses after pushing the motor positively for 10cm, and decrease 100000 pulses after pushing the motor negatively for 10cm. If the grating ruler Z signal is used, you can check whether the Z signal count is normal through U00.38. Each time the Z signal is encountered, the U00.08 count increases by 1.

If the hall signal is used, the status of the hall signal can be displayed through function code U00.39

U00.39	Hall_W	Hall_V	Hall_U
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	0

11.4 Linear angle identification

When F03 = 1 is used for angle identification, the angle identification method shall be selected according to the actual situation:

P0A.0B Selection of angle	Setting	Unit	Factory	Related		ed
identification mode	range		default	mode		e
	0-4	-	0	Р	S	Т

Notes:

- 0: Pre-positioning identification mode: In the identification process, the motor can move a maximum distance between poles.
- 1: Specified electric angle identification mode: In the identification process, the motor runs to the electric angle specified by the user (POA.0E).
- 2: jogging identification mode 1: This mode can be used after the gain motor parameters are matched, and the moving distance is very small.
- 3: jogging identification mode 2: small moving distance, uncoupled gain. (Recommended).
- 4: Hall identification mode: learn the hall signal position. After the motor is installed, it only needs to be identified once, and then it does not need to identify the angle.

During hall identification, it is necessary to set P0a.0b to 4 and use F03 = 1 for angle identification. After identification, the angle corresponding to Hall signal is saved in P18.09 ~ P18.0E. Check the angle interval of the result about 60 ° and roughly judge whether the identification result is accurate. If the alarm AI.01.5 (phase sequence error) occurs during angle identification, please replace phase sequence U and V.

11.5 Linear commissioning

For example, select a lower velocity for operation 50mm/s.

During the trial operation, in case of runaway AI.05.5, stalling AI.02.A and motor overload AI.02.9, the electric angle may be wrong.

It is necessary to confirm whether P18.05, P18.06 and P18.30 are set correctly. Other gain commissioning and pulse mode can be set according to the requirements in the user instruction.